Advertisement

Applied Physics A

, Volume 92, Issue 3, pp 557–563 | Cite as

Correlation of structure parameters of absorber layer with efficiency of Cu(In, Ga)Se2 solar cell

  • M. R. Balboul
  • H. W. Schock
  • S. A. Fayak
  • A. Abdel El-Aal
  • J. H. Werner
  • A. A. Ramadan
Rapid communication

Abstract

Polycrystalline Cu(In, Ga)Se2 with Ga-content x=Ga/(In+Ga) ranging from 0.0 (CuInSe2) to 1.0 (CuGaSe2) in heterojunction thin film solar cells were grown by multi-source evaporation. Solar cells with a highest efficiency of η=15.3% need a composition of x≈0.2. At this composition, the c/a ratio of the lattice constants for the tetragonal lattice equals c/a=2, indicating ideal tetragonality. These results suggest that low electronic defect densities occur at x≈0.2, due to the smallest possible crystallographic distortion of the tetragonal lattice at this composition. Cells with high efficiencies require grain sizes above 145 nm and a high preferred orientation (P204/P220 pole density ratio) for the grains.

PACS

84.60.Jt 41.50.+h 68.37.Yz 73.40.–c 73.50.Rb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt. Res. Appl. 7, 311 (1999) CrossRefGoogle Scholar
  2. 2.
    F.S. Hasoon, Y. Yan, H. Althani, K.M. Jones, H.R. Moutinho, J. Alleman, M.M. Al-Jassim, R. Noufi, Thin Solid Films 387, 1 (2001) CrossRefADSGoogle Scholar
  3. 3.
    R. Klenk, T. Walter, H.W. Schock, D. Cahen, Adv. Mat. 5, 114 (1993) CrossRefGoogle Scholar
  4. 4.
    A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, Appl. Phys. Lett. 65, 198 (1994) CrossRefADSGoogle Scholar
  5. 5.
    M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, R. Noufi, Sol. Energy Mater. Sol. Cells 41–42, 231 (1996) CrossRefGoogle Scholar
  6. 6.
    R.A. Young, The Rietveld Method, ed. by R.A. Young (Oxford University Press, London, 1993) Google Scholar
  7. 7.
    H.M. Rietveld, Acta Cryst. 22, 151 (1967) CrossRefGoogle Scholar
  8. 8.
    H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969) CrossRefGoogle Scholar
  9. 9.
    D.K. Suri, K.C. Nagpal, J. Appl. Cryst. 22, 578 (1989) CrossRefGoogle Scholar
  10. 10.
    G. Hanna, A. Jasenek, U. Rau, H.W. Schock, Phys. Stat. Sol. (a) 179, R7 (2000) CrossRefADSGoogle Scholar
  11. 11.
    G. Hanna, A. Jasenek, U. Rau, H.W. Schock, Thin Solid Films 387, 71 (2001) CrossRefADSGoogle Scholar
  12. 12.
    W.N. Shafarman, R. Klenk, B.E. McCandless, J. Appl. Phys. 79, 7324 (1996) CrossRefADSGoogle Scholar
  13. 13.
    V. Srikant, D.R. Clarke, P.V. Evans, Appl. Phys. Lett. 69, 1755 1996 CrossRefADSGoogle Scholar
  14. 14.
    Iribarren, R. Castro-Rodriguez, F. Caballero-Briones, J.L. Pena, Appl. Phys. Lett. 74, 2957 (1999) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. R. Balboul
    • 1
  • H. W. Schock
    • 2
  • S. A. Fayak
    • 1
  • A. Abdel El-Aal
    • 3
  • J. H. Werner
    • 2
  • A. A. Ramadan
    • 3
  1. 1.National Center for Radiation Research and Technology (NCRRT)CairoEgypt
  2. 2.Institute of Physical Electronics (IPE)University of StuttgartStuttgartGermany
  3. 3.Department of PhysicsFaculty of Science, Helween UniversityCairoEgypt

Personalised recommendations