Applied Physics A

, Volume 92, Issue 3, pp 531–539 | Cite as

The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array

  • Guanghui Xu
  • Qiang Zhang
  • Weiping Zhou
  • Jiaqi Huang
  • Fei Wei
Rapid communication


This study sought to produce carbon nanotube (CNT) pulp out of extremely long, vertically aligned CNT arrays as raw materials. After high-speed shearing and mixing nitric acid and sulfuric acid, which served as the treatment, the researchers produced the desired pulp, which was further transformed into CNT paper by a common filtration process. The paper’s tensile strength, Young’s modulus and electrical conductivity were 7.5 MPa, 785 MPa and 1.0×104 S/m, respectively, when the temperature of the acid treatment was at 110°C. Apart from this, the researchers also improved the mechanical property of CNT paper by polymers. The CNT paper was soaked in polyethylene oxide, polyvinyl pyrrolidone, and polyvinyl alcohol (PVA) solution, eventually making the CNT/PVA film show its mechanical properties, which increased, while its electrical conductivity decreased. To diffuse the polymer into the CNT paper thoroughly, the researchers used vacuum filtration to fabricate a CNT/PVA film by penetrating PVA into the CNT paper. After a ten-hour filtration, the tensile strength and Young’s modulus of CNT/PVA film were 96.1 MPa and 6.23 GPa, respectively, which show an increase by factors of 12 and 7, respectively, although the material’s electrical conductivity was lowered to 0.16×104 S/m.


81.40.Rs 81.05.Uw 81.05.Qk 81.07.De 82.35.Np 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996) CrossRefADSGoogle Scholar
  2. 2.
    S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Science 283, 512 (1999) CrossRefADSGoogle Scholar
  3. 3.
    F. Wei, Q. Zhang, W.Z. Qian, G.H. Xu, R. Xiang, Q. Wen, Y. Wang, G.H. Luo, New Carbon Mater. 22, 271 (2007) ADSGoogle Scholar
  4. 4.
    K.L. Jiang, Q.Q. Li, S.S. Fan, Nature 419, 801 (2002) CrossRefADSGoogle Scholar
  5. 5.
    R.H. Baughman, C.X. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 284, 1340 (1999) CrossRefADSGoogle Scholar
  6. 6.
    M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, N.S. Dresselhaus, Nature 433, 476 (2005) CrossRefADSGoogle Scholar
  7. 7.
    P.G. Whitten, G.M. Spinks, G.G. Wallace, Carbon 43, 1891 (2005) CrossRefGoogle Scholar
  8. 8.
    M.A. Poggi, P.T. Lillehei, L.A. Bottomley, Chem. Mater. 17, 4289 (2005) CrossRefGoogle Scholar
  9. 9.
    Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, M.S. Dresselhaus, Chem. Vapor Depos. 12, 327 (2006) CrossRefGoogle Scholar
  10. 10.
    A. Kukovecz, R. Smajda, Z. Konya, I. Kiricsi, Carbon 45, 1696 (2007) CrossRefGoogle Scholar
  11. 11.
    F. Zheng, D.L. Baldwin, L.S. Fifield, N.C. Anheier, C.L. Aardahl, J.W. Grate, Anal. Chem. 78, 2442 (2006) CrossRefGoogle Scholar
  12. 12.
    I.P. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D.L. Shi, Smart Mater. Struct. 15, 737 (2006) CrossRefADSGoogle Scholar
  13. 13.
    Y.A. Kim, H. Muramatsu, M. Kojima, T. Hayashi, Y. Kaburagi, M. Endo, J. Nanosci. Nanotechnol. 6, 3321 (2006) CrossRefGoogle Scholar
  14. 14.
    R. Smajda, A. Kukovecz, Z. Konya, I. Kiricsi, Carbon 45, 1176 (2007) CrossRefGoogle Scholar
  15. 15.
    K.T. Jeng, C.C. Chien, N.Y. Hsu, W.M. Huang, S.D. Chiou, S.H. Lin, J. Power Sources 164, 33 (2007) CrossRefGoogle Scholar
  16. 16.
    J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour, J. Am. Chem. Soc. 123, 6536 (2001) CrossRefGoogle Scholar
  17. 17.
    X.F. Zhang, T.V. Sreekumar, T. Liu, S. Kumar, J. Phys. Chem. B 108, 16435 (2004) CrossRefGoogle Scholar
  18. 18.
    J.Q. Wei, H.W. Zhu, Y.H. Li, B. Chen, Y. Jia, K.L. Wang, Z.C. Wang, W.J. Liu, J.B. Luo, M.X. Zheng, D.H. Wu, Y.Q. Zhu, B.Q. Wei, Adv. Mater. 18, 1695 (2006) CrossRefGoogle Scholar
  19. 19.
    T. Gong, Y. Zhang, W.J. Liu, J.Q. Wei, C.G. Li, K.L. Wang, D.H. Wu, M.L. Zhong, Carbon 45, 2235 (2007) CrossRefGoogle Scholar
  20. 20.
    Y. Jia, J.Q. Wei, Q.K. Shu, J.G. Chang, K.L. Wang, Z.C. Wang, J.B. Luo, W.J. Liu, M.X. Zheng, D.H. Wu, Chin. Sci. Bull. 52, 997 (2007) CrossRefGoogle Scholar
  21. 21.
    U. Vohrer, I. Kolaric, M.H. Haque, S. Roth, U. Detlaff-Weglikowska, Carbon 42, 1159 (2004) CrossRefGoogle Scholar
  22. 22.
    S.M. Cooper, H.F. Chuang, M. Cinke, B.A. Cruden, M. Meyyappan, Nano Lett. 3, 189 (2003) CrossRefGoogle Scholar
  23. 23.
    Z.F. Li, G.H. Luo, F. Wei, Y. Huang, Compos. Sci. Technol. 66, 1022 (2006) CrossRefGoogle Scholar
  24. 24.
    V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Proc. Natl. Acad. Sci 104, 13574 (2007) CrossRefADSGoogle Scholar
  25. 25.
    Y. Wang, F. Wei, G.H. Luo, H. Yu, G.S. Gu, Chem. Phys. Lett. 364, 568 (2002) CrossRefADSGoogle Scholar
  26. 26.
    Y. Wang, J. Wu, F. Wei, Carbon 41, 2939 (2003) CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, W.P. Zhou, W.Z. Qian, R. Xiang, J.Q. Huang, D.Z. Wang, F. Wei, J. Phys. Chem. C 111, 14638 (2007) CrossRefGoogle Scholar
  28. 28.
    R. Xiang, G. Luo, W. Qian, Y. Wang, F. Wei, Q. Li, Chem. Vapor Depos. 13, 533 (2007) CrossRefGoogle Scholar
  29. 29.
    Q. Zhang, J.Q. Huang, F. Wei, G.H. Xu, Y. Wang, W.Z. Qian, D.Z. Wang, Chin. Sci. Bull. 52, 2896 (2007) CrossRefGoogle Scholar
  30. 30.
    D. Wang, P. Song, C. Liu, W. Wu, S.S. Fan, Nanotechnology 19, 075609 (2008) CrossRefADSGoogle Scholar
  31. 31.
    W.P. Zhou, Y.L. Wu, F. Wei, G.H. Luo, W.Z. Qian, Polymer 46, 12689 (2005) CrossRefGoogle Scholar
  32. 32.
    W.Z. Qian, T. Liu, F. Wei, H.Y. Yuan, Carbon 41, 1851 (2003) CrossRefGoogle Scholar
  33. 33.
    H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, J. Phys. Chem. B 103, 8116 (1999) CrossRefGoogle Scholar
  34. 34.
    P.X. Hou, S. Bai, Q.H. Yang, C. Liu, H.M. Cheng, Carbon 40, 81 (2002) CrossRefGoogle Scholar
  35. 35.
    S. Picozzi, S. Santucci, L. Lozzi, C. Cantalini, C. Baratto, G. Sberveglieri, I. Armentano, J.M. Kenny, L. Valentini, B. Delley, J. Vac. Sci. Technol. A 22, 1466 (2004) CrossRefADSGoogle Scholar
  36. 36.
    C. Lau, R. Cervini, S. Clarke, M. Markovic, J. Matisons, S. Hawkins, C. Huynh, G. Simon, J. Nanopart. Res. (2008). DOI: 10.1007/s11051-008-9376-1 Google Scholar
  37. 37.
    J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley, Phys. Rev. B 55, R4921 (1997) CrossRefADSGoogle Scholar
  38. 38.
    G.T. Kim, E.S. Choi, D.C. Kim, D.S. Suh, Y.W. Park, K. Liu, G. Duesberg, S. Roth, Phys. Rev. B 58, 16064 (1998) CrossRefADSGoogle Scholar
  39. 39.
    A.D. Bozhko, D.E. Sklovsky, V.A. Nalimova, A.G. Rinzler, R.E. Smalley, J.E. Fischer, Appl. Phys. A 67, 75 (1998) CrossRefADSGoogle Scholar
  40. 40.
    T.V. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Chem. Mater. 15, 175 (2003) CrossRefGoogle Scholar
  41. 41.
    L. Berhan, Y.B. Yi, A.M. Sastry, E. Munoz, M. Selvidge, R. Baughman, J. Appl. Phys. 95, 4335 (2004) CrossRefADSGoogle Scholar
  42. 42.
    V. Skakalova, A.B. Kaiser, U. Dettlaff-Weglikowska, K. Hrncarikova, S. Roth, J. Phys. Chem. B 109, 7174 (2005) CrossRefGoogle Scholar
  43. 43.
    U. Dettlaff-Weglikowska, V. Skakalova, R. Graupner, S.H. Jhang, B.H. Kim, H.J. Lee, L. Ley, Y.W. Park, S. Berber, D. Tomanek, S. Roth, J. Am. Chem. Soc. 127, 5125 (2005) CrossRefGoogle Scholar
  44. 44.
    P.G. Whitten, A.A. Gestos, G.M. Spinks, K.J. Gilmore, G.G. Wallace, J. Biomed. Mater. Res. B Appl. Biomater. 82, 37 (2007) Google Scholar
  45. 45.
    L.C. Teague, S. Banerjee, S.S. Wong, C.A. Richter, B. Varughese, J.D. Batteas, Chem. Phys. Lett. 442, 354 (2007) CrossRefADSGoogle Scholar
  46. 46.
    J.N. Coleman, W.J. Blau, A.B. Dalton, E. Munoz, S. Collins, B.G. Kim, J. Razal, M. Selvidge, G. Vieiro, R.H. Baughman, Appl. Phys. Lett. 82, 1682 (2003) CrossRefADSGoogle Scholar
  47. 47.
    Z. Wang, Z.Y. Liang, B. Wang, C. Zhang, L. Kramer, Compos. Part A 35, 1225 (2004) CrossRefGoogle Scholar
  48. 48.
    S.R. Wang, Z.Y. Liang, G. Pham, Y.B. Park, B. Wang, C. Zhang, L. Kramer, P. Funchess, Nanotechnology 18, 095708 (2007) CrossRefADSGoogle Scholar
  49. 49.
    J.H. Gou, Polym. Int. 55, 1283 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Guanghui Xu
    • 1
  • Qiang Zhang
    • 1
  • Weiping Zhou
    • 1
  • Jiaqi Huang
    • 1
  • Fei Wei
    • 1
  1. 1.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations