Applied Physics A

, Volume 92, Issue 3, pp 447–452 | Cite as

3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope

  • A. P. Hitchcock
  • G. A. Johansson
  • G. E. Mitchell
  • M. H. Keefe
  • T. Tyliszcak


Three-dimensional chemical mapping using angle scan nanotomography in a soft X-ray scanning transmission X-ray microscope (STXM) has been used to investigate the spatial distributions of a low density polyacrylate polyelectrolyte ionomer inside submicron sized polystyrene microspheres. Acquisition of tomograms at multiple photon energies provides true, quantifiable 3-d chemical sensitivity. Both pre-O 1s and C 1s results are shown. The study reveals aspects of the 3-d distribution of the polyelectrolyte that were inferred indirectly or had not been known prior to this study. The potential and challenges for extension of the technique to studies of other polymeric and to biological systems is discussed.


68.37.Yz 81.70.Tx 82.35.Lr 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.A. Johansson, T. Tyliszczak, G.E. Mitchell, M.H. Keefe, A.P. Hitchcock, J. Synchrotron Radiat. 14, 395–402 (2007) CrossRefGoogle Scholar
  2. 2.
    G.A. Johansson, J.J. Dynes, A.P. Hitchcock, T. Tyliszczak, G.D.W. Swerhone, J.R. Lawrence, Proc. SPIE 6318, 6318–1I 2006) Google Scholar
  3. 3.
    G.A. Johansson, J.J. Dynes, A.P. Hitchcock, T. Tyliszczak, G.D. Swerhone, J.R. Lawrence, Microsc. Microanal. 12(S2), 1412–1413 (2006) CrossRefADSGoogle Scholar
  4. 4.
    D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, G. Schmahl, Ultramicroscopy, 84, 185–197 (2000) CrossRefGoogle Scholar
  5. 5.
    C.A. Larabell, M.A. Le Gros, Mol. Biol. Cell 15, 957–962 (2004) CrossRefGoogle Scholar
  6. 6.
    Y. Wang, C. Jacobsen, J. Maser, A. Osanna, J. Microsc. 197, 80–93 (2000) CrossRefGoogle Scholar
  7. 7.
    J. Stöhr, NEXAFS Spectroscopy. Springer Tracts in Surface Science, vol. 25 (Springer, Berlin, 1992) Google Scholar
  8. 8.
    M.G. Schrlau, E.M. Falls, B.L. Ziober, H.H. Bau, Nanotechnology 19(1), 015101 (2008) CrossRefADSGoogle Scholar
  9. 9.
    T. Warwick, H. Ade, A.L.D. Kilcoyne, M. Kritscher, T. Tylisczcak, S. Fakra, A.P. Hitchcock, P. Hitchcock, H.A. Padmore, J. Synchrotron Radiat. 9, 254–257 (2002) CrossRefGoogle Scholar
  10. 10.
    A.L.D. Kilcoyne, T. Tylisczak, W.F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E.G. Rightor, G.E. Mitchell, A.P. Hitchcock, L. Yang, T. Warwick, H. Ade, J. Synchrotron Radiat. 10, 125–136 (2003) CrossRefGoogle Scholar
  11. 11.
    E. Beach, M. Keefe, W. Heeschen, D. Rothe, Polymer 46, 11195–11197 (2005) Google Scholar
  12. 12.
    B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54, 181–342 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. P. Hitchcock
    • 1
  • G. A. Johansson
    • 1
  • G. E. Mitchell
    • 2
  • M. H. Keefe
    • 3
  • T. Tyliszcak
    • 4
  1. 1.BIMRMcMasterHamiltonCanada
  2. 2.Analytical ScienceDow ChemicalMidlandUSA
  3. 3.Dow LatexDow ChemicalMidlandUSA
  4. 4.Advanced Light SourceLBNLBerkeleyUSA

Personalised recommendations