Applied Physics A

, Volume 92, Issue 4, pp 877–881 | Cite as

Influence of photoexcitation pathways on the initiation of ablation in poly (methyl methacrylate)

  • Manish Prasad
  • Patrick F. Conforti
  • Barbara J. Garrison
Article

Abstract

Experimental and theoretical studies of laser ablation of polymers, under various processing conditions, have identified many possible photoexcitation pathways and consequently many likely processes responsible for the onset of ablation. We investigate the role of these processes—namely the thermal, mechanical and chemical processes—occurring in a polymeric substrate during UV irradiation. Molecular dynamics simulations with an embedded Monte Carlo-based reaction scheme were used to study ablation of Poly (methyl methacrylate) at 157 nm. Laser-induced heating and chemical decomposition of the polymeric substrate are considered as ablation pathways. For the heating case, the mechanism of ejection is thermally driven limited by the critical number of bonds broken. This fragmentation process is well reproduced by the existing bulk photothermal ablation model. Alternatively, if the photon energy goes toward direct bond breaking, it initiates chemical reactions, polymer unzipping, and formation of gaseous products leading to near complete decomposition, loss of strength and cohesiveness of the top layers of the polymeric substrate. The ejection of small gaseous molecules weakens and hollows out the substrate, facilitating liftoff of larger fragments of material. These larger clusters are thermally ejected and the photochemical ablation process can be described by the two-step model proposed by Kalontarov.

PACS

61.80.Az 79.20.Ap 79.20.Ds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Hillenkamp, M. Karas, Int. J. Mass Spectrom. 200, 71 (2000) CrossRefGoogle Scholar
  2. 2.
    R.E. Johnson, in Large Ions: Their Vaporization, Detection and Structural Analysis, ed. by T. Baer, C.Y. Ng, I. Powis (Wiley, New York, 1996), p. 49 Google Scholar
  3. 3.
    N.H. Niemz, Laser Tissue Interactions: Fundamentals and Applications (Springer, Berlin, 2002) Google Scholar
  4. 4.
    P.E. Dyer, Appl. Phys. A 77, 167 (2003) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000) Google Scholar
  6. 6.
    A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta Part B At. Spectrosc. 58, 1867 (2003) CrossRefADSGoogle Scholar
  7. 7.
    R. Srinivasan, B. Braren, D.E. Seeger, R.W. Dreyfus, Macromolecules 19, 916 (1986) CrossRefGoogle Scholar
  8. 8.
    D.J. Krajnovich, J. Phys. Chem. A 101, 2033 (1997) CrossRefGoogle Scholar
  9. 9.
    T. Efthimiopoulos, C. Kiagias, G. Heliotis, E. Helidonis, Can. J. Phys. 78, 509 (2000) CrossRefADSGoogle Scholar
  10. 10.
    M. Tsunekawa, S. Nishio, H. Sato, J. Appl. Phys. 76, 5598 (1994) CrossRefADSGoogle Scholar
  11. 11.
    T. Lippert, Plasma Process. Polym. 2, 525 (2005) CrossRefGoogle Scholar
  12. 12.
    S. Kuper, S. Modaressi, M. Stuke, J. Phys. Chem. 94, 7514 (1990) CrossRefGoogle Scholar
  13. 13.
    M.B. Christiansen, M. Scholer, S. Balslev, R.B. Nielsen, D.H. Petersen, A. Kristensen, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 24, 3252 (2006) CrossRefGoogle Scholar
  14. 14.
    N. Bityurin, B.S. Luk’yanchuk, M.H. Hong, T.C. Chong, Chem. Rev. 103, 519 (2003) CrossRefGoogle Scholar
  15. 15.
    H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, J. Troe, J. Appl. Phys. 83, 5458 (1998) CrossRefADSGoogle Scholar
  16. 16.
    N. Arnold, N. Bityurin, D. Bauerle, Appl. Surf. Sci. 138–139, 212 (1999) CrossRefGoogle Scholar
  17. 17.
    N. Bityurin, A. Malyshev, J. Appl. Phys. 92, 605 (2002) CrossRefADSGoogle Scholar
  18. 18.
    R. Srinivasan, B. Braren, Chem. Rev. 89, 1303 (1989) CrossRefGoogle Scholar
  19. 19.
    S. Kuper, M. Stuke, Appl. Phys. Mater. Sci. Process. 49, 211 (1989) CrossRefADSGoogle Scholar
  20. 20.
    B. Danielzik, N. Fabricius, M. Rowekamp, D.V.D. Linde, Appl. Phys. Lett. 48, 212 (1986) CrossRefADSGoogle Scholar
  21. 21.
    R.C. Estler, N.S. Nogar, Appl. Phys. Lett. 49, 1175 (1986) CrossRefADSGoogle Scholar
  22. 22.
    P.E. Dyer, R. Srinivasan, J. Appl. Phys. 66, 2608 (1989) CrossRefADSGoogle Scholar
  23. 23.
    T. Lippert, R.L. Webb, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 85, 1838 (1999) CrossRefADSGoogle Scholar
  24. 24.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, J. Phys. Chem. B 101, 2028 (1997) CrossRefGoogle Scholar
  25. 25.
    L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000) CrossRefADSGoogle Scholar
  26. 26.
    Y.G. Yingling, L.V. Zhigilei, B.J. Garrison, J. Photochem. Photobiol. A 145, 173 (2001) CrossRefGoogle Scholar
  27. 27.
    L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003) CrossRefGoogle Scholar
  28. 28.
    Y.G. Yingling, B.J. Garrison, J. Phys. Chem. B 109, 16482 (2005) CrossRefGoogle Scholar
  29. 29.
    M. Prasad, P.F. Conforti, B.J. Garrison, J. Chem. Phys. 127, 084705 (2007) CrossRefADSGoogle Scholar
  30. 30.
    L.V. Zhigilei, B.J. Garrison, Mater. Res. Soc. Symp. Proc. 538, 491 (1999) Google Scholar
  31. 31.
    A. Gupta, R. Liang, F.D. Tsay, J. Moacanin, Macromolecules 13, 1696 (1980) CrossRefGoogle Scholar
  32. 32.
    T.H. Fedynyshyn, R.R. Kunz, R.F. Sinta, R.B. Goodman, S.P. Doran, J. Vac. Sci. Technol. B 18, 3332 (2000) CrossRefGoogle Scholar
  33. 33.
    M. Prasad, P.F. Conforti, B.J. Garrison, J. Appl. Phys. 101, 103113 (2007) CrossRefADSGoogle Scholar
  34. 34.
    M. Prasad, P.F. Conforti, B.J. Garrison, Y.G. Yingling, Appl. Surf. Sci. 253, 6382 (2007) CrossRefADSGoogle Scholar
  35. 35.
    P.F. Conforti, M. Prasad, B.J. Garrison, J. Phys. Chem. C 111, 12024 (2007) CrossRefGoogle Scholar
  36. 36.
    P.F. Conforti, M. Prasad, B.J. Garrison, Appl. Surf. Sci. 253, 6386 (2007) CrossRefADSGoogle Scholar
  37. 37.
    L.I. Kalontarov, R. Marupov, Chem. Phys. Lett. 196, 15 (1992) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Manish Prasad
    • 1
  • Patrick F. Conforti
    • 1
  • Barbara J. Garrison
    • 1
  1. 1.Department of ChemistryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations