Applied Physics A

, Volume 92, Issue 2, pp 267–274

Tribological characteristics of ZnO nanowires investigated by atomic force microscope

  • Koo-Hyun Chung
  • Hyun-Joon Kim
  • Li-Yu Lin
  • Dae-Eun Kim


Zinc oxide (ZnO) nanowires have attracted great interest in nanodevices. In this work, the tribological characteristics of vertically grown ZnO nanowires obtained by metalorganic chemical vapor deposition were investigated by using an atomic force microscope (AFM). The ZnO nanowires were slid against flattened silicon and diamond-coated AFM probes under 50–150 nN normal force while monitoring the frictional force. The wear of the ZnO nanowires was observed by a scanning electron microscope and quantified based on Archard’s wear law. Also, the wear debris accumulated on the silicon probe was analyzed by using a transmission electron microscope (TEM). The results showed that the wear of ZnO nanowires slid against the silicon probe was extremely small. However, when the ZnO nanowires were slid against the diamond-coated probe, the wear coefficients ranged from 0.006 to 0.162, which correspond to the range of severe wear at the macroscale. It was also shown that the friction coefficient decreased from 0.30 to 0.25 as the sliding cycles increased. From TEM observation, it was found that the ZnO wear debris was mainly amorphous in structure. Also, crystalline ZnO nanoparticles were observed among the wear debris.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)CrossRefGoogle Scholar
  2. 2.
    J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, M. Li, Z.L. Dong, Appl. Phys. Lett. 88, 233106-1 (2006)Google Scholar
  3. 3.
    M.-C. Jeong, B.Y. Oh, O.H. Nam, T. Kim, J.-M. Myoung, Nanotechnology 17, 526 (2006)CrossRefADSGoogle Scholar
  4. 4.
    H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14, 158 (2002)CrossRefGoogle Scholar
  5. 5.
    C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett. 81, 3648 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)CrossRefADSGoogle Scholar
  7. 7.
    X.Y. Kong, Y. Ding, Z.L. Wang, Science 303, 1348 (2004)CrossRefADSGoogle Scholar
  8. 8.
    Z.L. Wang, J. Phys.: Condens. Matter 16, R829 (2004)CrossRefADSGoogle Scholar
  9. 9.
    W. Lee, M.-C. Jeong, J.-M. Myoung, Nanotechnology 17, 526 (2006)CrossRefADSGoogle Scholar
  10. 10.
    L.-Y. Lin, J.-M. Seo, M.-C. Jeong, K.-J. Koo, D.-E. Kim, J.-M. Myoung, Mater. Sci. Eng. A 460461, 370 (2007)Google Scholar
  11. 11.
    H. Kado, K. Yokoyama, T. Tohda, Rev. Sci. Instrum. 63, 3330 (1992)CrossRefADSGoogle Scholar
  12. 12.
    H. Kado, S. Yamamoto, K. Yokoyama, T. Tohda, Y. Umetani, J. Appl. Phys. 74, 4354 (1993)CrossRefADSGoogle Scholar
  13. 13.
    R. Navamathavan, K.-K. Kim, D.-K. Hwang, S.-J. Park, J.-H. Hahn, T.G. Lee, G.S. Kim, Appl. Surf. Sci. 253, 464 (2006)CrossRefADSGoogle Scholar
  14. 14.
    T.-H. Fang, W.-J. Chang, C.-M. Lin, Mater. Sci. Eng. A 452453, 715 (2007)Google Scholar
  15. 15.
    L.-Y. Lin, M.-C. Jeong, D.-E. Kim, J.-M. Myoung, Surf. Coat. Technol. 201, 2547 (2006)CrossRefGoogle Scholar
  16. 16.
    V.A. Coleman, J.E. Bradby, C. Jagadish, P. Munroe, Y.W. Heo, S.J. Pearton, D.P. Norton, M. Inoue, M. Yano, Appl. Phys. Lett. 86, 203105-1 (2005)Google Scholar
  17. 17.
    J. Song, X. Wang, E. Riedo, Z.L. Wang, Nano Lett. 5, 1954 (2005)CrossRefGoogle Scholar
  18. 18.
    J.J. Nainaparampil, J.S. Zabinski, S.V. Prasad, J. Vac. Sci. Technol. A 17, 1787 (1999)CrossRefADSGoogle Scholar
  19. 19.
    S.V. Prasad, J.S. Zabinski, Wear 203204, 498 (1997)Google Scholar
  20. 20.
    K.H. Chung, Y.H. Lee, D.-E. Kim, J. Yoo, S. Hong, IEEE Trans. Magn. 41, 849 (2005)CrossRefGoogle Scholar
  21. 21.
    M.C. Jeong, B.Y. Oh, W. Lee, J.-M. Myoung, J. Cryst. Growth 268, 149 (2004)CrossRefGoogle Scholar
  22. 22.
    K.-H. Chung, Y.-H. Lee, D.-E. Kim, Ultramicroscopy 102, 161 (2005)CrossRefGoogle Scholar
  23. 23.
    K.-H. Chung, D.-E. Kim, Ultramicroscopy 108, 1 (2007)CrossRefGoogle Scholar
  24. 24.
    S.P. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw Hill, New York, 1987)Google Scholar
  25. 25.
    G. Bogdanovic, A. Meurk, M.W. Rutland, Colloid Surf. B 19, 397 (2000)Google Scholar
  26. 26.
    K.H. Chung, D.-E. Kim, Tribol. Lett. 15, 135 (2003)CrossRefGoogle Scholar
  27. 27.
    E. Rabinowicz, Friction and Wear of Materials (Wiley-Interscience, New York, 1995)Google Scholar
  28. 28.
    D.-E. Kim, K.H. Cha, I.H. Sung, J. Bryan, Ann. CIRP 51, 495 (2002)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Koo-Hyun Chung
    • 1
  • Hyun-Joon Kim
    • 1
  • Li-Yu Lin
    • 1
  • Dae-Eun Kim
    • 1
  1. 1.Department of Mechanical EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations