Applied Physics A

, Volume 91, Issue 4, pp 621–625 | Cite as

Exciton photoluminescence from ZnO layers produced by laser-induced gas breakdown processing



The plasma of optically-excited gas breakdown has been used to treat a Zn target in atmospheric pressure gases (air, O2, N2, Ar). The breakdown is produced near the target by a pulsed CO2 laser radiation, yielding to a local erosion of the target under the irradiation spot and the formation of a porous nanostructured layer, consisting of ZnO nanoscale spheres. We show that the produced nanostructured layers exhibit an intense exciton emission band in the ultraviolet range (380–385 nm), while defect-related photoluminescent bands were weak and could be completely removed by varying the fabrication parameters. Properties of the produced layers were found to be very promising for the development of optoelectronic devices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Ozgur, Y.I. Alilov, C. Liu, A. Teke, M.A. Reshnikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998)CrossRefADSGoogle Scholar
  3. 3.
    H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H. Chang, Phys. Rev. Lett. 82, 2278 (1999)CrossRefADSGoogle Scholar
  4. 4.
    H. Cao, Y.G. Zhao, X. Liu, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 75, 1213 (2000)CrossRefADSGoogle Scholar
  5. 5.
    H.D. Li, S.F. Yu, S.P. Lau, E.S.P. Leong, Appl. Phys. Lett. 89, 021110 (2006)CrossRefADSGoogle Scholar
  6. 6.
    E.V. Chelnokov, N. Bityurin, I. Ozerov, W. Marine, Appl. Phys. Lett. 89, 171119 (2006)CrossRefADSGoogle Scholar
  7. 7.
    R.M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, R.M. Penner, Chem. Mater. 10, 1120 (1998)CrossRefGoogle Scholar
  8. 8.
    P. Hoyer, H. Weller, Chem. Phys. Lett. 221, 379 (1994)CrossRefADSGoogle Scholar
  9. 9.
    S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (1998)CrossRefADSGoogle Scholar
  10. 10.
    A. Ortiz, C. Falcony, J. Hernandez, A.M. Garcua, J.C. Alonso, Thin Solid Films 293, 103 (1997)CrossRefGoogle Scholar
  11. 11.
    L. Vasanelli, A. Valentini, A. Losacco, Sol. Energ. Mater. 16, 91 (1987)CrossRefGoogle Scholar
  12. 12.
    Y. Sato, S. Sato, Thin Solid Films 281, 445 (1996)CrossRefGoogle Scholar
  13. 13.
    T. Maruyama, J. Shionoya, J. Mater. Sci. Lett. 11, 170 (1992)CrossRefGoogle Scholar
  14. 14.
    J. Ma, F. Ji, H.-L. Ma, S. Li, Thin Solid Films 279, 213 (1996)CrossRefGoogle Scholar
  15. 15.
    N. Izyumskaya, V. Avrutin, W. Schoch, W.A. El-Shaer, F. Reuss, T. Gruber, A. Waag, J. Cryst. Growth 269, 356 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, A. Iliadis, D.C. Look, Appl. Phys. Lett. 75, 3947 (1999)CrossRefADSGoogle Scholar
  17. 17.
    I. Ozerov, D. Nelson, A.V. Bulgakov, W. Marine, M. Sentis, Appl. Surf. Sci. 212, 349 (2003)CrossRefADSGoogle Scholar
  18. 18.
    I. Ozerov, M. Arab, V.I. Safarov, W. Marine, S. Giorgio, M. Sentis, L. Nanai, Appl. Surf. Sci. 226, 242 (2004)CrossRefADSGoogle Scholar
  19. 19.
    A.V. Kabashin, M. Meunier, Appl. Surf. Sci. 186, 578 (2002)CrossRefADSGoogle Scholar
  20. 20.
    A.V. Kabashin, M. Meunier, Appl. Phys. Lett. 82, 1619 (2003)CrossRefADSGoogle Scholar
  21. 21.
    A.V. Kabashin, M. Meunier, Mater. Sci. Eng. B 101, 60 (2003)CrossRefGoogle Scholar
  22. 22.
    D.-Q. Yang, A.V. Kabashin, V.-G. Pilon-Marien, E. Sacher, M. Meunier, J. Appl. Phys. 95, 5722 (2004)CrossRefADSGoogle Scholar
  23. 23.
    F.V. Bunkin, V.I. Konov, A.M. Prokhorov, V.B. Fedorov, JTP Lett. 9, 371 (1969)ADSGoogle Scholar
  24. 24.
    A.J. Pedraza, J.D. Fowlkes, D.H. Lowndes, Appl. Phys. Lett. 74, 2322 (1999)CrossRefADSGoogle Scholar
  25. 25.
    A.V. Kabashin, J.-P. Sylvestre, S. Patskovsky, M. Meunier, J. Appl. Phys. 91, 3248 (2002)CrossRefADSGoogle Scholar
  26. 26.
    T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998)CrossRefADSGoogle Scholar
  27. 27.
    Y.P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, New York, 1977)Google Scholar
  28. 28.
    A.V. Kabashin, A. Trudeau, W. Marine, M. Meunier, Appl. Phys. Lett. 91, 201101 (2007)Google Scholar
  29. 29.
    M.G. Drouet, H. Pepin, Appl. Phys. Lett. 28, 426 (1976)CrossRefADSGoogle Scholar
  30. 30.
    V.V. Korobkin, R.V. Serov, Pisma Zh. Eksp. Teor. Fiz. 4, 103 (1966) [see also J. Exp. Theor. Phys. Lett. 4, 70 (1966)]Google Scholar
  31. 31.
    A.V. Kabashin, P.I. Nikitin, Quantum Electron. 27, 536 (1997)CrossRefGoogle Scholar
  32. 32.
    A.V. Kabashin, P.I. Nikitin, W. Marine, M. Sentis, Appl. Phys. Lett. 73, 25 (1998)CrossRefADSGoogle Scholar
  33. 33.
    R.E. Hummel, S.-S. Chang, Appl. Phys. Lett. 61, 1965 (1992)CrossRefADSGoogle Scholar
  34. 34.
    S.-S. Chang, G.J. Choi, H.J. Park, M.E. Stora, R.E. Hummel, Mater. Sci. Eng. B 83, 29 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A.V. Kabashin
    • 1
  • A. Trudeau
    • 1
  • W. Marine
    • 2
  • M. Meunier
    • 1
  1. 1.Laser Processing Laboratory, Ecole Polytechnique de Montréal, Département de Génie PhysiqueMontréalCanada
  2. 2.CRMCN UPR CNRS 7251, Departement de Physique, Case 901, Faculté des Sciences de LuminyMarseille Cedex 9France

Personalised recommendations