Applied Physics A

, Volume 91, Issue 3, pp 369–373 | Cite as

Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning

  • A.F. Lasagni
  • D.F. Acevedo
  • C.A. Barbero
  • F. Mücklich
Rapid communication

Abstract

In this work, we report a simple method for the fabrication of regular conducting polyanliline periodic arrays on large areas of glass or gold substrates using direct laser interference patterning. Additionally, by controlling the laser intensity it is possible to precisely tune the width of the periodic arrays and consequently the electrical resistance of the polyanliline strips. The periodic arrays were characterized using scanning electron microscopy, white light interferometry and cyclic voltametry. The great importance of the method reported lies both in its versatility and the ability to control the properties of the modified polymer electrodes with high precision. This is important for prospective applications such as electrochemical sensors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Shirakawa, Angew. Chem. Int. Edit. 40, 2575 (2001)Google Scholar
  2. 2.
    A. Mac-Diarmid, Angew. Chem. Int. Edit. 40, 2581 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Heeger, Angew. Chem. Int. Edit. 40, 2591 (2001)CrossRefGoogle Scholar
  4. 4.
    D. Verna, V. Dutta, J. Phys. C Condens. Matter 19, 186212 (2007)CrossRefADSGoogle Scholar
  5. 5.
    T. Abdirym, R. Jamal, I. Nurulla, J. Appl. Polym. Sci. 105, 576 (2007)CrossRefGoogle Scholar
  6. 6.
    F. Huang, H.L. Wang, M. Feldstein, A. MacDiarmid, B. Hsieh, A. Epstein, Synth. Met. 85, 1283 (1997)CrossRefGoogle Scholar
  7. 7.
    E. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, Synth. Met. 36, 139 (1990)CrossRefGoogle Scholar
  8. 8.
    A. Patil, A. Heeger, F. Wudl, Chem. Rev. 888, 183 (1980)Google Scholar
  9. 9.
    P. Novaìk, K. Muuller, K. Santhanam, O. Haas, Chem. Rev. 97, 207 (1997)CrossRefGoogle Scholar
  10. 10.
    H. Sangodkar, S. Sukeerthi, R. Srinivasa, R. Lal, A. Contractor, Anal. Chem. 68, 779 (1996)CrossRefGoogle Scholar
  11. 11.
    N. Oyama, T. Tatsuma, T. Sato, T. Sotomura, Nature 374, 196 (1995)ADSGoogle Scholar
  12. 12.
    S. Beaupré, M. Leclerc, Macromolecules 36, 8986 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Aleshin, Adv. Mater. 18, 17 (2006)CrossRefGoogle Scholar
  14. 14.
    L. Zhang, H. Peng, Z. Zujovic, P. Kilmartin, J. Travas-Sejdic, Macromol. Chem. Phys. 208, 1210 (2007)CrossRefGoogle Scholar
  15. 15.
    D. Acevedo, A. Lasagni, C. Barbero, F. Mucklich, Adv. Mater. 19, 1272 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Yun, N. Myung, R. Vasquez, C. Lee, E. Menke, R. Penner, Pure Appl. Chem. 74, 1753 (2002)CrossRefGoogle Scholar
  17. 17.
    Y. Berdichevsky, Y.H. Lo, Adv. Mater. 18, 122 (2006)CrossRefGoogle Scholar
  18. 18.
    Y. Zhu, J. Li, M. Wan, L. Jiang, Y. Wie, Macromol. Rapid. Commun. 28, 1339 (2007)CrossRefGoogle Scholar
  19. 19.
    Y. Dong, N. Lu, M. Zelsmann, N. Kehagias, H. Fuchs, C. Sotomayor Torres, L. Chi, Adv. Funct. Mater. 16, 1937 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Yun, N.V. Myung, R.P. Vasquez, C. Lee, E. Menke, R.M. Penner, Nano Lett. 4, 419 (2004)CrossRefGoogle Scholar
  21. 21.
    N. Zhu, Z. Chang, P. He, Y. Fang, Electrochim. Acta 18, 3758 (2006)CrossRefGoogle Scholar
  22. 22.
    M.D. Rahman, P. Kumar, D. Park, Y. Shim, Sensors 8, 118 (2008)Google Scholar
  23. 23.
    N. Zhua, Z. Chang, P. He, Y. Fang, Electrochim. Acta 51, 3758 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Sandison, J. Cooper, Lab. Chip. 6, 1020 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Sung, S. Kim, K. Lee, J. Power Source. 124, 343 (2003)CrossRefGoogle Scholar
  26. 26.
    K.S. Lee, G. Blanchet, F. Gao, Y. Yueh-Lin Loo, Appl. Phys. Lett. 86, 074102 (2005)CrossRefADSGoogle Scholar
  27. 27.
    C. Lee, Y. Seo, S. Lee, Macromolecules 37, 4070 (2004)CrossRefGoogle Scholar
  28. 28.
    G. Venugopal, X. Quan, G.E. Johnson, F. Houlihan, E. Chin, O. Nalamasu, Chem. Mater. 7, 271 (1995)CrossRefGoogle Scholar
  29. 29.
    H. Salavagione, M. Miras, C. Barbero, Macromol. Rapid. Commun. 27, 26 (2005)CrossRefGoogle Scholar
  30. 30.
    L. Geppert, IEEE Spectrum 33, 33 (1996)Google Scholar
  31. 31.
    A. Lasagni, C. Holzapfel, F. Mucklich, Adv. Eng. Mater. 7, 487 (2005)CrossRefGoogle Scholar
  32. 32.
    F. Mucklich, A. Lasagni, C. Daniel, Intermetallics 13, 437 (2005)CrossRefGoogle Scholar
  33. 33.
    D. Acevedo, A. Lasagni, C. Barbero, F. Mucklich, Proc. Mat. Res. Soc. Symp. 2007 (submitted)Google Scholar
  34. 34.
    F. Yu, P. Li, H. Shen, S. Mathur, C. Lehr, U. Bakowsky, F. Mücklich, Biomaterials 26, 2307 (2005)CrossRefGoogle Scholar
  35. 35.
    M. Kelly, J. Rogg, C. Nebel, M. Stutzmann, S. Kaìtai, Phys. Stat. Solidi A 166, 651 (1998)CrossRefADSGoogle Scholar
  36. 36.
    A. Lasagni, D. Acevedo, C. Barbero, F. Mucklich, Adv. Eng. Mater. 9, 99 (2007)CrossRefGoogle Scholar
  37. 37.
    D. Acevedo, M. Miras, C. Barbero, Combinatorial Synthesis and Screening of Photochromic Dyes and Modified Conducting Polymers (CRC Press, Boca Raton, 2006), Chapt. 13Google Scholar
  38. 38.
    P. Sbaite, D. Huerta-Vilca, C. Barbero, M. Miras, A. Motheo, Eur. Polym. J. 40, 1445 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A.F. Lasagni
    • 1
    • 2
  • D.F. Acevedo
    • 1
    • 3
  • C.A. Barbero
    • 3
  • F. Mücklich
    • 1
  1. 1.Department of Materials ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Georgia Institute of TechnologyGeorge W. Woodruff School of Mechanical EngineeringAtlantaUSA
  3. 3.Departamento de QuímicaUniversidad Nacional de Río CuartoCórdobaArgentina

Personalised recommendations