Applied Physics A

, Volume 92, Issue 1, pp 69–76 | Cite as

The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media

  • A. Nevin
  • D. Anglos
  • S. Cather
  • A. Burnstock


Spectrofluorimetric analysis of proteinaceous binding media is particularly promising because proteins employed in paintings are often fluorescent and media from different sources have significantly different fluorescence spectral profiles. Protein-based binding media derived from eggs, milk and animal tissue have been used for painting and for conservation, but their analysis using non-destructive techniques is complicated by interferences with pigments, their degradation and their low concentration. Changes in the fluorescence excitation emission spectra of films of binding media following artificial ageing to an equivalent of 50 and 100 years of museum lighting include the reduction of bands ascribed to tyrosine, tryptophan and Maillard reaction products and an increase in fluorescent photodegradation. Fluorescence of naturally aged paint is dependent on the nature of the pigment present and, with egg-based media, in comparison with un-pigmented films, emissions ascribed to amino acids are more pronounced.


Malachite Green Pentosidine Lead White Nevin Binding Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Andreotti, I. Bonaduce, M.P. Colombini, G. Gautier, F. Modugno, E. Ribechini, Anal. Chem. 78, 13 (2006)CrossRefGoogle Scholar
  2. 2.
    C. Tokarski, E. Martin, C. Rolando, C. Cren-Olive, Anal. Chem. 78, 5 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Fabbri, M. Picollo, S. Porcinai, M. Bacci, Appl. Spectrosc. 55, 420 (2001)CrossRefADSGoogle Scholar
  4. 4.
    P. Vandenabeele, B. Wehling, L. Moens, H. Edwards, M. De Reu, G. Van Hooykonk, Anal. Chim. Acta 407, 1 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Nevin, I. Osticioli, D. Anglos, A. Burnstock, S. Cather, E. Castellucci, Anal. Chem. 79, 6143 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Miyoshi, Japan. J. Appl. Phys. 24, 8 (1985)CrossRefGoogle Scholar
  7. 7.
    L.J. Larson, K.-S.K. Shin, J.I. Zink, J. Am. Inst. Conserv. 30, 1 (1991)CrossRefGoogle Scholar
  8. 8.
    D. Anglos, M. Solomidou, I. Zergioti, V. Zafiropulos, T.G. Papazoglou, C. Fotakis, Appl. Spectrosc. 50, 1331 (1996)CrossRefADSGoogle Scholar
  9. 9.
    A. Nevin, S. Cather, D. Anglos, C. Fotakis, Anal. Chim. Acta 573, 341 (2006)CrossRefGoogle Scholar
  10. 10.
    T. Miyoshi, Japan. J. Appl. Phys. 27, 4 (1987)Google Scholar
  11. 11.
    C. Miliani, G. Favaro, A. Romani, Spectrochim. Acta A 54, 581 (1998)CrossRefGoogle Scholar
  12. 12.
    K.J. Van Den Berg, J.J. Boon, I. Pastorova, L.F.M. Spetter, J. Mass Spectrom. 35, 4 (2000)Google Scholar
  13. 13.
    O.F. van den Brink, J.J. Boon, P.B. O’Connor, M.C. Duursma, R.M. Heeren, J. Mass Spectrom. 36, 5 (2001)Google Scholar
  14. 14.
    M.P. Colombini, F. Modugno, J. Sep. Sci. 27, 3 (2004)CrossRefGoogle Scholar
  15. 15.
    M.J. Davies, R.J.W. Truscott, J. Photochem. Photobiol. B 63, 1 (2001)CrossRefGoogle Scholar
  16. 16.
    J.S. Church, K.R. Millington, Biospectroscopy 2, 249 (1996)Google Scholar
  17. 17.
    S.M. Halpine, Stud. Conserv. 37, 1 (1992)CrossRefGoogle Scholar
  18. 18.
    M.R. Schilling, H.P. Khanjian, J. Am. Inst. Conserv. 35, 2 (1996)Google Scholar
  19. 19.
    M.P. Colombini, R. Fuoco, A. Giacomelli, B. Muscatello, Stud. Conserv. 43, 1 (1998)CrossRefGoogle Scholar
  20. 20.
    M.P. Colombini, F. Modugno, F. Silvano, M. Onor, Stud. Conserv. 45, 1 (2000)CrossRefGoogle Scholar
  21. 21.
    M.P. Colombini, F. Modugno, E. Menicagli, R. Fuoco, A. Giacomelli, Microchem. J. 67, 1 (2000)CrossRefGoogle Scholar
  22. 22.
    A. Nevin, D. Comelli, G. Valentini, D. Anglos, A. Burnstock, S. Cather, R. Cubeddu, Anal. Bioanal. Chem. 388, 1897 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Ladhokin, in Encyclopedia of Analytical Chemistry, ed. by R. Meyers (Wiley, Chichester, 2000)Google Scholar
  24. 24.
    Z. Deyl, I. Miksik, J. Zicha, J. Chromatogr. A 836, 1 (1999)CrossRefGoogle Scholar
  25. 25.
    D. Comelli, C. D’andrea, G. Valentini, R. Cubeddu, C. Colombo, L. Toniolo, Appl. Opt. 43, 10 (2004)CrossRefGoogle Scholar
  26. 26.
    A. Nevin, D. Anglos, Laser Chem. (2006), DOI: 10.1155/2006/82823Google Scholar
  27. 27.
    A. Casoli, G. Palla, J. Tavlaridis, Stud. Conserv. 43, 3 (1998)CrossRefGoogle Scholar
  28. 28.
    G. Gautier, M.P. Colombini, Talanta 73, 1 (2007)CrossRefGoogle Scholar
  29. 29.
    D.A. Scott, M. Dennis, N. Khandekar, J. Keeney, D. Carson, L.S. Dodd, Stud. Conserv. 48, 1 (2003)Google Scholar
  30. 30.
    M.R. Schilling, H.P. Khanjian, L.A.C. Souza, J. Am. Inst. Conserv. 35, 1 (1996)CrossRefGoogle Scholar
  31. 31.
    M.R. Schilling, H.P. Khanjian, in 11th Trienn. Meet. ICOM Committee for Conservation, Edinburgh, Scotland, 1–6 September 1996 (James & James, London, 1996), pp. 211–219Google Scholar
  32. 32.
    A.M. Edwards, E. Silva, J. Photochem. Photobiol. B 63, 1 (2001)CrossRefGoogle Scholar
  33. 33.
    C.Y. Lu, Y.Y. Liu, Biochim. Biophys. Acta 1571, 1 (2002)Google Scholar
  34. 34.
    C.D. Cennini, Il libro dell’Arte (Dover, London, 1960)Google Scholar
  35. 35.
    R. Howells, A. Burnstock, G. Hedley, S. Hackney, in Paris Congr. Adhesives and Consolidants, 2–8 September 1984 (International Institute of Conservation, London, 1984), pp. 36–43Google Scholar
  36. 36.
    D. Saunders, J. Kirby, Conservator 25, 95 (2001)Google Scholar
  37. 37.
    K.R. Millington, Color Technol. 122, 301 (2006)Google Scholar
  38. 38.
    J.L. Reubsaet, J.H. Beijnen, A. Bult, R.J. van Maanen, J.A. Daniëlle Marchal, W.J. Underberg, J. Pharmaceut. Biomed. 17, 955 (1998)Google Scholar
  39. 39.
    J. Fontecha, J. Bellanato, M. Juarez, J. Dairy Sci. 76, 11 (1993)Google Scholar
  40. 40.
    H. Jing, D.D. Kitts, Food Chem. Toxicol. 42, 11 (2004)Google Scholar
  41. 41.
    U. Tagami, S. Akashi, T. Mizukoshi, E. Suzuki, K. Hirayama, J. Mass Spectrom. 35, 2 (2000)Google Scholar
  42. 42.
    D.G. Dyer, J.A. Blackledge, S.R. Thorpe, J.W. Baynes, J. Biol. Chem. 266, 18 (1991)Google Scholar
  43. 43.
    C. Cantor, P. Schimmel, Biophysical Chemistry, Part 1: The Conformation of Biological Macromecules (Freeman, New York, 1980)Google Scholar
  44. 44.
    C. Giulivi, N.J. Traaseth, K.J.A. Davies, Amino Acids 25, 3 (2003)Google Scholar
  45. 45.
    L. Campbell, V. Raikos, S.R. Euston, Nahrung 47, 6 (2003)Google Scholar
  46. 46.
    R. Karoui, B. Kemps, F. Bamelis, B. De Ketelaere, K. Merten, R. Schoonheydt, E. Decuypere, J. De Baerdemaeker, Eur. Food Res. Technol. 223, 303 (2006)Google Scholar
  47. 47.
    R. Karoui, B. Kemps, F. Bamelis, B. De Ketelaere, K. Merten, R. Schoonheydt, E. Decuypere, J. De Baerdemaeker, Eur. Food Res. Technol. 223, 180 (2006)Google Scholar
  48. 48.
    E.R. de la Rie, Stud. Conserv. 27, 3 (1982)Google Scholar
  49. 49.
    T. Miyoshi, Japan. J. Appl. Phys. 24, 3 (1985)CrossRefGoogle Scholar
  50. 50.
    J. Van Der Weerd, A. Van Loon, J.J. Boon, Stud. Conserv. 50, 1 (2005)Google Scholar
  51. 51.
    O.F. van den Brink, Molecular Changes in Egg Tempera Paint Dosimeters as Tools to Monitor the Museum Environment, Ph.D. thesis, University of Amsterdam (2001)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Nevin
    • 1
    • 2
    • 3
  • D. Anglos
    • 1
  • S. Cather
    • 2
  • A. Burnstock
    • 2
  1. 1.Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH)HeraklionGreece
  2. 2.Courtauld Institute of ArtUniversity of LondonLondonUK
  3. 3.Dipartimento di FisicaPolitecnico di MilanoMilanoItaly

Personalised recommendations