Advertisement

Applied Physics A

, Volume 92, Issue 1, pp 77–81 | Cite as

Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods

  • J.-P. Echard
  • M. Cotte
  • E. Dooryhee
  • L. Bertrand
Article

Abstract

Though ancient violins and other stringed instruments are often revered for the beauty of their varnishes, the varnishing techniques are not much known. In particular, very few detailed varnish analyses have been published so far. Since 2002, a research program at the Musée de la musique (Paris) is dedicated to a detailed description of varnishes on famous ancient musical instruments using a series of novel analytical methods. For the first time, results are presented on the study of the varnish from a late 16th century Venetian lute, using synchrotron micro-analytical methods. Identification of both organic and inorganic compounds distributed within the individual layers of a varnish microsample has been performed using spatially resolved synchrotron Fourier transform infrared microscopy. The univocal identification of the mineral phases is obtained through synchrotron powder X-ray diffraction. The materials identified may be of utmost importance to understand the varnishing process and its similarities with some painting techniques. In particular, the proteinaceous binding medium and the calcium sulfate components (bassanite and anhydrite) that have been identified in the lower layers of the varnish microsample could be related, to a certain extent, to the ground materials of earlier Italian paintings.

Keywords

Anhydrite Calcium Sulfate Bassanite Painting Technique Stringed Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-P. Echard, Art et chimie: les polymères (CNRS Editions, Paris, 2003), p. 75Google Scholar
  2. 2.
    J. Hammerl, R. Hammerl, Violin Varnishes (Hammerl, Baiersdorf, 1988)Google Scholar
  3. 3.
    J. Michelman, Science 112, 337 (1950)CrossRefADSGoogle Scholar
  4. 4.
    C.Y. Barlow, P.P. Edwards, G.R. Millward, R.A. Raphael, D.J. Rubio, Nature 332, 313 (1988)CrossRefADSGoogle Scholar
  5. 5.
    P.A. Tove, D. Sigurd, S. Petersson, Nucl. Instrum. Methods 168, 441 (1980)CrossRefGoogle Scholar
  6. 6.
    A. von Bohlen, Anal. Lett. 37, 487 (2004)Google Scholar
  7. 7.
    A. von Bohlen, F. Meyer, Spectrochim. Acta B 52, 1053 (1997)CrossRefADSGoogle Scholar
  8. 8.
    J.-P. Echard, Spectrochim. Acta B 59, 1663 (2004)CrossRefADSGoogle Scholar
  9. 9.
    J.-P. Echard, S. Vaïedelich, De la peinture de chevalet à l’instrument de musique: vernis, liants et couleurs (Cité de la musique, Paris, 2008), pp. 104–113Google Scholar
  10. 10.
    A. von Bohlen, S. Röhrs, J. Salomon, Anal. Bioanal. Chem. 387, 781 (2007)CrossRefGoogle Scholar
  11. 11.
    F. Meyer, in Dartington Violin Conf., East Devon College, 1995, p. 29Google Scholar
  12. 12.
    R. White, in ICOM Committee for Conservation 5th Trienn. Meet., Zagreb, 16 January 1978, p. 1Google Scholar
  13. 13.
    F. Caruso, S. Orecchio, M.G. Cicero, C. Di Stefano, J. Chromatogr. A 1147, 206 (2007)CrossRefGoogle Scholar
  14. 14.
    J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J.V. Gimeno-Adelantado, S. Vaiedelich, Anal. Chim. Acta 584, 172 (2007)CrossRefGoogle Scholar
  15. 15.
    L.M. Condax, Catgut Acoust. Soc. Newslett. 37, 31 (1982)Google Scholar
  16. 16.
    J.-P. Echard, Les vernis de violon (Cité de la musique, Paris, 2007), p. 82Google Scholar
  17. 17.
    J. Dugot, in Les luths (Occident) – Catalogue des collections du Musée de la musique, vol. 1 (Cité de la musique, Paris, 2006), pp. 7, 58Google Scholar
  18. 18.
    M. Cotte, E. Checroun, J. Susini, P. Dumas, P. Tchoreloff, M. Besnard, P. Walter, Talanta 70, 1136 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Hochleitner, M. Schreiner, M. Drakopoulos, I. Snigireva, A. Snigirev, in Proc. Conf. Art 2002, Antwerp, Belgium, June (2003)Google Scholar
  20. 20.
    L. Bertrand, Synchrotron imaging for archaeology, art history, conservation and paleontology, in Physical Principles in Art and Archaeometry, vol. 2 (Elsevier, 2007), pp. 97–112Google Scholar
  21. 21.
    N. Salvado, S. Butı, M.J. Tobin, E. Pantos, A.J.N.W. Prag, T. Pradell, Anal. Chem. 77, 3444 (2005)CrossRefGoogle Scholar
  22. 22.
    J. Susini, M. Cotte, P. Dumas, M. Rak, K. Scheidt, F. Polack, O. Chubar, in preparationGoogle Scholar
  23. 23.
    F.A. Miller, C.H. Wilkins, Anal. Chem. 24, 1253 (1952)CrossRefGoogle Scholar
  24. 24.
    R.J. Gettens, M.E. Mrose, Stud. Conserv. 1, 174 (1954)CrossRefGoogle Scholar
  25. 25.
    R.J. Gettens, G.L. Stout, Gypsum, in Painting Materials: A Short Encyclopedia (Dover, New York, 1966), p. 117Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J.-P. Echard
    • 1
    • 2
  • M. Cotte
    • 3
  • E. Dooryhee
    • 4
  • L. Bertrand
    • 5
  1. 1.Laboratoire de Recherche et de Restauration, Musée de la Musique, Cité de la MusiqueParisFrance
  2. 2.Centre de Recherche sur la Conservation des Collections, CNRS UMR 7188Muséum National d’Histoire NaturelleParisFrance
  3. 3.European Synchrotron Radiation Facility, ESRF, ID21Grenoble CedexFrance
  4. 4.Institut Néel, CNRS UPR 2940Grenoble Cedex 9France
  5. 5.Heritage and Archaeology Liaison Office, Synchrotron SOLEIL, Saint-AubinGif-sur-Yvette CedexFrance

Personalised recommendations