Advertisement

Applied Physics A

, Volume 91, Issue 2, pp 181–210 | Cite as

Molecular electronics in silico

  • G.F. Cerofolini
  • E. Romano
Invited paper

Abstract

Assuming with Feynman that single atoms can be used as elementary memory cells, this would give a maximum density of information units of the order of 1015 cm-2 for a planar arrangement. If the chemical composition of the surface is fixed and any information change is simply associated with an electronic or conformational change between two possible states of any given surface atom, the above arrangement would result in a maximum information density of just 1 Pbit cm-2 – peta-scale integration (PSI). The manipulation of information on the atomic scale, however, requires the use of macroscopic-scale apparatuses that may, to date, be operated only at a negligible rate. Fundamental quantum mechanical considerations show instead that electrons can be configured with bit densities of the order of 1012 cm-2 (tera-scale integration, TSI); moreover, electron presence or flow can be controlled and sensed by already existing mesoscopic-scale apparatuses in giga-scale integration (GSI). Even though there is no clear method to enable the full exploitation of the performances of such devices, the TSI density is within the reach of the present technology. Rather than scaling down conventional CMOS (complementary metal–oxide–semiconductor) circuits, TSI may almost be achieved via a hybrid architecture where a silicon-based CMOS circuit controls a nanoscopic crossbar structure hosting in each cross-point a collection of functional molecules able to mimic by themselves the behaviour of a memory cell. The hybrid (silicon + molecules) route, however, poses severe problems. The following ones have been identified as the most important: (i) the setting up of an economically sustainable technology for the preparation of cross-points with density higher than 1011 cm-2; (ii) the demultiplexing of the addressing lines to allow their linkage to the CMOS circuit; (iii) the design, synthesis, and electrical characterization of the functional molecules; and (iv) the grafting via batch processing of the functional molecules to the cross-points forming the crossbar. This paper is devoted to discuss the severe challenges posed by the hybrid architecture and to present the solutions that have been found.

Keywords

Lower Unoccupied Molecular Orbital Rose Bengal Functional Molecule Nanometre Length Scale Imprint Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.F. Cerofolini, Appl. Phys. A 86, 23 (2007)Google Scholar
  2. 2.
    Anon., Nature 432, 8 (2004)Google Scholar
  3. 3.
    A. Aviram, M. Ratner, Chem. Phys. Lett. 29, 277 (1974)CrossRefADSGoogle Scholar
  4. 4.
    M.A. Reed, MRS Bull. 26, 113 (2001)Google Scholar
  5. 5.
    J.M. Tour, in Stimulating Concepts in Chemistry, ed. by F. Vögtle, J.F. Stoddart, M. Shibasaki (Wiley-VCH, Weinheim, 2000), p. 237Google Scholar
  6. 6.
    J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Science 286, 1550 (1999)CrossRefGoogle Scholar
  7. 7.
    D.I. Gittins, D. Bethell, D.J. Schiffrin, R.J. Nichols, Nature 408, 67 (2000)CrossRefADSGoogle Scholar
  8. 8.
    R.W. Keyes, in Molecular Electronics and Molecular Electronic Devices, ed. by K. Sienicki (CRC, Boca Raton, FL, 1993), Chap. 1, p. 1Google Scholar
  9. 9.
    J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, Science 280, 1716 (1998)CrossRefGoogle Scholar
  10. 10.
    M.M. Ziegler, M.R. Stan, IEEE Trans. Nanotechnol. 2, 217 (2003)CrossRefADSGoogle Scholar
  11. 11.
    A. DeHon, IEEE Trans. Nanotechnol. 2, 23 (2003)CrossRefADSGoogle Scholar
  12. 12.
    P.M. Mendes, A.H. Flood, J.F. Stoddart, Appl. Phys. A 80, 1197 (2005)CrossRefGoogle Scholar
  13. 13.
    M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 78, 3735 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath, Chem. Phys. Chem. 3, 519 (2002)Google Scholar
  15. 15.
    R.F. Service, Science 302, 556 (2003)CrossRefGoogle Scholar
  16. 16.
    D.R. Stewart, D.A.A. Ohlberg, P. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, Nano Lett. 4, 133 (2004)CrossRefADSGoogle Scholar
  17. 17.
    C.N. Lau, D.R. Stewart, R.S. Williams, D. Bockrath, Nano Lett. 4, 569 (2004)CrossRefADSGoogle Scholar
  18. 18.
    N.B. Zhitenev, W. Jiang, A. Erbe, Z. Bao, E. Garfunkel, D.M. Tennant, R.A. Cirelli, Nanotechnology 17, 1272 (2006)CrossRefADSGoogle Scholar
  19. 19.
    M.P. Stewart, F. Maya, D.V. Kosynkin, S.M. Dirk, J.J. Stapleton, C.L. McGuiness, D.L. Allara, J.M. Tour, J. Am. Chem. Soc. 126, 370 (2004)CrossRefGoogle Scholar
  20. 20.
    J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. Delonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, H.-R. Tseng, J.F. Stoddart, J.R. Heath, Nature 445, 414 (2007)CrossRefADSGoogle Scholar
  21. 21.
    H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Nature 441, 69 (2006)CrossRefADSGoogle Scholar
  22. 22.
    G.F. Cerofolini, D. Mascolo, in Nanotechnology for Electronic Materials and Devices, ed. by E. Gusev, A. Korkin, J. Labanowski, S. Luryi (Springer, New York, 2006), Chap. 1, p. 1Google Scholar
  23. 23.
    G.F. Cerofolini, L. Meda, Physical Chemistry of, in and on Silicon (Springer, Berlin, 1989), Chap. 10Google Scholar
  24. 24.
    P.S. Weiss, ACS Nano 1, 3 (2007); conversation with H. RohrerGoogle Scholar
  25. 25.
    Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors, 2005 edn., available at http://public.itrs.netGoogle Scholar
  26. 26.
    J.E. Lilienfeld, U.S. Patent 1,745,175; application filed 8 Oct 1926, granted 18 Jan 1930Google Scholar
  27. 27.
    O. Heil, U.K. Patent 439,457; application filed 4 Mar 1935, granted 6 Dec 1935Google Scholar
  28. 28.
    W. Shockley, IEEE Trans. Electron Devices ED-23, 597 (1976)Google Scholar
  29. 29.
    M. Atalla, D. Khang, IEEE Trans. Electron. Dev. ED-9, 507 (1962)Google Scholar
  30. 30.
    J.A. Appels, M.M. Paffen, Philips Res. Rep. 6, 157 (1971)Google Scholar
  31. 31.
    E. Kooi, J.G. van Lierop, W.H.C.G. Verkuijlen, R. de Werdt, Philips Res. Rep. 26, 166 (1971)Google Scholar
  32. 32.
    L.L. Vadasz, A.S. Grove, T.A. Rowe, G.E. Moore, IEEE Spectrum 6, 28 (1969)Google Scholar
  33. 33.
    W.R. Hunter, T.C. Holloway, P.K. Chatterjee, A.F. Tasch Jr., IEEE Electron Device Lett. EDL-2, 4 (1981)Google Scholar
  34. 34.
    Y.-K. Choi, T.-J. King, C. Hu, IEEE Trans. Electron Devices ED-49, 436 (2002)Google Scholar
  35. 35.
    D. Natelson, R.L. Willett, K.W. West, L.N. Pfeiffer, Appl. Phys. Lett. 77, 1991 (2000)CrossRefADSGoogle Scholar
  36. 36.
    N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, J.R. Heath, Science 300, 112 (2003)CrossRefADSGoogle Scholar
  37. 37.
    D.B. Gates, Q.B. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, Chem. Rev. 105, 1171 (2005)CrossRefGoogle Scholar
  38. 38.
    G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, V. Nosik, Microelectron. Eng. 81, 405 (2005)CrossRefGoogle Scholar
  39. 39.
    G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, Nanotechnology 16, 1040 (2005)CrossRefADSGoogle Scholar
  40. 40.
    G.F. Cerofolini, Nanotechnol. E-Newslett. 7, 5 (2005)Google Scholar
  41. 41.
    Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, G.A. Somorjai, J. Phys. Chem. B 107, 3340 (2003)CrossRefGoogle Scholar
  42. 42.
    D.C. Flanders, N.N. Efremow, J. Vac. Sci. Technol. B 1, 1105 (1983)CrossRefGoogle Scholar
  43. 43.
    Y.-K. Choi, J.S. Lee, J. Zhu, G.A. Somorjai, L.P. Lee, J. Bokor, J. Vac. Sci. Technol. 21, 2951 (2003)CrossRefGoogle Scholar
  44. 44.
    S. Wurm, Solid State Technol., October 2006 online, p. 01-011, available at www.solid-state.comGoogle Scholar
  45. 45.
    M. Roukes, Sci. Am. Rep. 17, 4 (2007)Google Scholar
  46. 46.
    Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313 (2001)Google Scholar
  47. 47.
    Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Science 302, 1377 (2003)CrossRefADSGoogle Scholar
  48. 48.
    A. DeHon, P. Lincoln, J.E. Savage, IEEE Trans. Nanotechnol. 2, 165 (2003)CrossRefADSGoogle Scholar
  49. 49.
    R. Alley, M. Cumbie, R. Enck, D. Huang, P. Kornilovitch, S. Ramamoorthi, J. Wu, X. Yang, MST News 4/06, 8 (2006)Google Scholar
  50. 50.
    K. Likharev, D.B. Strukov, in Introducing Molecular Electronics, ed. by G. Cuniberti, G. Fagas, K. Richter (Springer, Berlin, 2005), Chap. 16, p. 447Google Scholar
  51. 51.
    D.B. Strukov, K. Likharev, Nanotechnology 16, 137 (2005)Google Scholar
  52. 52.
    R. Beckman, E. Johnston-Halperin, Y. Luo, J.E. Green, J.R. Heath, Science 310, 465 (2005)CrossRefADSGoogle Scholar
  53. 53.
    W. Wu, G.-Y. Jung, D.L. Olynick, J. Strasnicky, Z. Li, X. Li, D.A.A. Ohlberg, Y. Chen, S.-Y. Wang, J.A. Liddle, W.M. Tong, R.S. Williams, Appl. Phys. A 80, 1173 (2005)CrossRefGoogle Scholar
  54. 54.
    G.F. Cerofolini, D. Mascolo, Semicond. Sci. Technol. 21, 1315 (2006)CrossRefADSGoogle Scholar
  55. 55.
    G.F. Cerofolini, Appl. Phys. A 86, 31 (2007)CrossRefADSGoogle Scholar
  56. 56.
    D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, D. Vuillaume, Anal. Chim. Acta 568, 84 (2006)CrossRefGoogle Scholar
  57. 57.
    H. Yu, Y. Luo, K. Beverly, J.F. Stoddart, H.-R. Tseng, J.R. Heath, Angew. Chem. Int. Ed. 42, 5706 (2003)Google Scholar
  58. 58.
    A. Salomon, T. Boecking, C.K. Chan, F. Amy, O. Girshevitz, D. Cahen, A. Kahn, Phys. Rev. Lett. 95, 266807 (2005)Google Scholar
  59. 59.
    O. Seitz, T. Böcking, A. Salomon, J.J. Gooding, D. Cahen, Langmuir 22, 6915 (2006)CrossRefGoogle Scholar
  60. 60.
    G.F. Cerofolini, A. Giussani, F. Carone Fabiani, A. Modelli, D. Mascolo, D. Ruggiero, D. Narducci, E. Romano, Surf. Interface Anal. 39, 836 (2007)Google Scholar
  61. 61.
    W. Wang, T. Lee, M.A. Reed, J. Phys. Chem. B 108, 18398 (2004)Google Scholar
  62. 62.
    W. Wang, T. Lee, I. Kretzschmar, M.A. Reed, Nano Lett. 4, 643 (2004)Google Scholar
  63. 63.
    G. Fagas, J.C. Greer, Nanotechnology 18, 424010 (2007)CrossRefADSGoogle Scholar
  64. 64.
    J. He, B. Chen, A.K. Flatt, J.J. Stephenson, C.D. Doyle, J.M. Tour, Nat. Mater. 5, 63 (2006)CrossRefADSGoogle Scholar
  65. 65.
    L. Baldi, G.F. Cerofolini, G. Ferla, G. Frigerio, Phys. Stat. Solidi A 48, 523 (1978)CrossRefADSGoogle Scholar
  66. 66.
    L. Baldi, G.F. Cerofolini, G. Ferla, J. Electrochem. Soc. 127, 125 (1980)CrossRefGoogle Scholar
  67. 67.
    G.F. Cerofolini, M.L. Polignano, J. Appl. Phys. 55, 579 (1984)CrossRefADSGoogle Scholar
  68. 68.
    M.L. Polignano, G.F. Cerofolini, H. Bender, C. Claeys, J. Appl. Phys. 64, 869 (1988)CrossRefADSGoogle Scholar
  69. 69.
    P. Cappelletti, G.F. Cerofolini, M.L. Polignano, J. Appl. Phys. 57, 646 (1985)CrossRefADSGoogle Scholar
  70. 70.
    G.F. Cerofolini, M.L. Polignano, J. Appl. Phys. 55, 3823 (1984)CrossRefADSGoogle Scholar
  71. 71.
    G.F. Cerofolini, M.L. Polignano, Appl. Phys. A 50, 273 (1990)CrossRefADSGoogle Scholar
  72. 72.
    G.F. Cerofolini, Phys. Stat. Solidi A 102, 345 (1987)CrossRefADSGoogle Scholar
  73. 73.
    J.M. Seminario, A.G. Zacarias, J.M. Tour, J. Am. Chem. Soc. 122, 3015 (2000) FCrossRefGoogle Scholar
  74. 74.
    Y. Ikenoue, N. Uotani, A.O. Patil, F. Wudl, A.J. Heeger, Synth. Met. 30, 305 (1989)CrossRefGoogle Scholar
  75. 75.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957)MathSciNetCrossRefGoogle Scholar
  76. 76.
    R. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)CrossRefADSGoogle Scholar
  77. 77.
    E.H. Hauge, J.A. Støvneng, Rev. Mod. Phys. 61, 917 (1989)CrossRefADSGoogle Scholar
  78. 78.
    P. Pfeifer, J. Frölich, Rev. Mod. Phys. 67, 761 (1995)CrossRefADSGoogle Scholar
  79. 79.
    S.F. Bent, Surf. Sci. 500, 879 (2002)CrossRefADSGoogle Scholar
  80. 80.
    G. Cleland, B.R. Horrocks, A. Houlton, J. Chem. Soc. Faraday Trans. 91, 4001 (1995)CrossRefGoogle Scholar
  81. 81.
    A. Ulman, Adv. Mater. 2, 573 (1990)CrossRefGoogle Scholar
  82. 82.
    C.A. Roth, Ind. Eng. Chem. Prod. Res. Dev. 11, 134 (1972)Google Scholar
  83. 83.
    J.M. Buriak, Chem. Rev. 102, 1271 (2002)Google Scholar
  84. 84.
    H. Ubara, T. Imura, A. Hiraki, Solid State Commun. 50, 673 (1984)Google Scholar
  85. 85.
    G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari, Appl. Phys. Lett. 56, 656 (1990)Google Scholar
  86. 86.
    T. Aoyama, K. Goto, T. Yamazaki, T. Ito, J. Vac. Sci. Technol. A 14, 2909 (1996)Google Scholar
  87. 87.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, N. Spinella, D. Jones, V. Palermo, Phys. Rev. B 72, 125431 (2005)Google Scholar
  88. 88.
    F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th edn. (Wiley, New York, 1988)Google Scholar
  89. 89.
    M.A. Brook, Silicon in Organic, Organometallic and Polymer Chemistry (Wiley, Chichester, 2000), p. 402Google Scholar
  90. 90.
    J.S. Hovis, R.J. Hamers, J. Phys. Chem. B 101, 9581 (1997)Google Scholar
  91. 91.
    H. Liu, R.J. Hamers, Surf. Sci. 416, 354 (1998)Google Scholar
  92. 92.
    M.P. Schwartz, M.D. Ellison, S.K. Coulter, J.S. Hovis, R.J. Hamers, J. Am. Chem. Soc. 122, 8529 (2000)Google Scholar
  93. 93.
    M.P. Schwartz, R.J. Hamers, Surf. Sci. 515, 75 (2002)Google Scholar
  94. 94.
    J. Terry, M.R. Lindford, C. Wigren, R. Cao, P. Pianetta, C.E.D. Chidsey, J. Appl. Phys. 85, 213 (1999)Google Scholar
  95. 95.
    A.B. Sieval, A.L. Demirel, J.W.M. Nissink, J.H. van der Maas, W.H. de Jeu, H. Zuilhof, E.J.R. Sudholter, Langmuir 14, 1759 (1998)Google Scholar
  96. 96.
    A.B. Sieval, V. Vleemimg, H. Zuilhof, E.J.R. Sudholter, Langmuir 15, 8288 (1999)Google Scholar
  97. 97.
    A. Scandurra, L. Renna, G. Cerofolini, S. Pignataro, Surf. Interface Anal. 34, 777 (2002)Google Scholar
  98. 98.
    A. Lehner, G. Steinhoff, M.S. Brandt, M. Eickhoff, M. Stutzmann, J. Appl. Phys. 94, 2289 (2003)CrossRefADSGoogle Scholar
  99. 99.
    M. Kosuri, H. Gerung, Q. Li, S.M. Han, B.C. Bunker, T.M. Mayer, Langmuir 19, 9315 (2003)CrossRefGoogle Scholar
  100. 100.
    A.B. Sieval, R. Opitz, H.P.A. Maas, M.G. Schoeman, G. Meijer, F.J. Vergeldt, H. Zuilhof, E.J.R. Sudholter, Langmuir 16, 10359 (2000)CrossRefGoogle Scholar
  101. 101.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Mater. Sci. Eng. C 23, 253 (2003)CrossRefGoogle Scholar
  102. 102.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Semicond. Sci. Technol. 18, 423 (2003)CrossRefADSGoogle Scholar
  103. 103.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, O. Viscuso, G.G. Condorelli, I.L. Fragalà, Mater. Sci. Eng. C 23, 989 (2003)CrossRefGoogle Scholar
  104. 104.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Appl. Phys. A 80, 161 (2004)CrossRefADSGoogle Scholar
  105. 105.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Surf. Interface Anal. 36, 71 (2004)Google Scholar
  106. 106.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, G.G. Condorelli, I.L. Fragalà, G. Giorgi, A. Sgamellotti, N. Re, Appl. Surf. Sci. 246, 52 (2005)Google Scholar
  107. 107.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Surf. Interface Anal. 38, 126 (2006)Google Scholar
  108. 108.
    M. Woods, S. Carlsson, Q. Hong, S.N. Patole, L.H. Lie, A. Houlton, B.R. Horrocks, J. Phys. Chem. B 109, 24035 (2005)CrossRefGoogle Scholar
  109. 109.
    C. Coletti, A. Marrone, G. Giorgi, A. Sgamellotti, G.F. Cerofolini, N. Re, Langmuir 22, 9949 (2006)CrossRefGoogle Scholar
  110. 110.
    G.F. Cerofolini, G. Ferla, J. Nanopart. Res. 4, 185 (2002)CrossRefGoogle Scholar
  111. 111.
    S.W. Howell, S.M. Dirk, K. Childs, H. Pang, M. Blain, R.J. Simonson, J.M. Tour, D.R. Wheeler, Nanotechnology 16, 754 (2005)CrossRefADSGoogle Scholar
  112. 112.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, P. Ward, Appl. Phys. A 81, 187 (2005)CrossRefADSGoogle Scholar
  113. 113.
    G.F. Cerofolini, L. Meda, Appl. Surf. Sci. 89, 351 (1995)CrossRefADSGoogle Scholar
  114. 114.
    G.F. Cerofolini, Appl. Surf. Sci. 133, 108 (1998)CrossRefADSGoogle Scholar
  115. 115.
    J. Kemsley, Chem. Eng. News 85, 17 (2007)Google Scholar
  116. 116.
    R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Proc. IEEE 91, 489 (2003)Google Scholar
  117. 117.
    C.D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J.M. Shaw, Science 283, 822 (1999)Google Scholar
  118. 118.
    G.F. Cerofolini, V. Casuscelli, A. Cimmino, A. Di Matteo, V. Di Palma, D. Mascolo, E. Romanelli, M.V. Volpe, E. Romano, Semicond. Sci. Technol. 22, 1053 (2007)CrossRefADSGoogle Scholar
  119. 119.
    D.C. Neckers, J. Photochem. Photobiol. A 47, 1 (1989)CrossRefGoogle Scholar
  120. 120.
    C. Lambert, T. Sarna, T.G. Truscott, J. Chem. Soc. Faraday Trans. 86, 3879 (1990)CrossRefGoogle Scholar
  121. 121.
    A. Bandhopadhyay, A.J. Pal, J. Phys. Chem. B 107, 2531 (2003)CrossRefGoogle Scholar
  122. 122.
    A. Bandhopadhyay, A.J. Pal, Appl. Phys. Lett. 82, 1215 (2003)CrossRefADSGoogle Scholar
  123. 123.
    A. Bandhopadhyay, A.J. Pal, Chem. Phys. Lett. 371, 86 (2003)CrossRefADSGoogle Scholar
  124. 124.
    S.K. Majee, A. Bandhopadhyay, A.J. Pal, Chem. Phys. Lett. 399, 284 (2004)CrossRefADSGoogle Scholar
  125. 125.
    A. Bandhopadhyay, A.J. Pal, J. Phys. Chem. B 109, 6084 (2005)CrossRefGoogle Scholar
  126. 126.
    F.L.E. Jakobsson, X. Crispin, M. Berggren, Appl. Phys. Lett. 87, 63503 (2005)CrossRefGoogle Scholar
  127. 127.
    S. Karthäuser, B. Lüssem, M. Weides, M. Alba, A. Besmehn, R. Oligschlaeger, R. Waser, J. Appl. Phys. 100, 094504 (2006)CrossRefADSGoogle Scholar
  128. 128.
    R.F. Heck, J. Am. Chem. Soc. 90, 5518 (1968)CrossRefGoogle Scholar
  129. 129.
    K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 44, 67 (1975)Google Scholar
  130. 130.
    H. Jan, J.M. Tour, J. Org. Chem. 68, 5091 (2003)Google Scholar
  131. 131.
    X. Zheng, M.E. Mulcahy, D. Horinek, F. Galeotti, T.F. Magnera, J. Michl, J. Am. Chem. Soc. 126, 4540 (2004)Google Scholar
  132. 132.
    J.D. Badji, V. Balzani, A. Credi, S. Silvi, J.F. Stoddart, Science 303, 1845 (2004)CrossRefADSGoogle Scholar
  133. 133.
    Y. Shirai, A.J. Osgood, Y. Zhao, K.F. Kelly, J.M. Tour, Nano Lett. 5, 230 (2005)CrossRefGoogle Scholar
  134. 134.
    A. Credi, V. Balzani, S.J. Langford, J.F. Stoddart, J. Am. Chem. Soc. 119, 2679 (1997)CrossRefGoogle Scholar
  135. 135.
    V. Balzani, M. Gomez-Lopez, J.F. Stoddart, Acc. Chem. Res. 31, 405 (1998)CrossRefGoogle Scholar
  136. 136.
    B.L. Feringa, R.A. van Delden, M.K.J. ter Wiel, Pure Appl. Chem. 75, 563 (2003)CrossRefGoogle Scholar
  137. 137.
    E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007)Google Scholar
  138. 138.
    W.R. Browne, B.L. Feringa, Nat. Nanotechnol. 1, 25 (2006)Google Scholar
  139. 139.
    R. Eelkema, M.M. Pollard, J. Vicario, N. Katsonis, B.S. Ramon, C.W.M. Bastiaansen, D.J. Broer, B.L. Feringa, Nature 440, 163 (2006)Google Scholar
  140. 140.
    J.M. Lehn, P. Ball, in The New Chemistry, ed. by N. Hall (Cambridge University Press, Cambridge, 2000), Chap. 12Google Scholar
  141. 141.
    N. van Gulick, New J. Chem. 17, 619 (1993); originally presented at the Reaction Mechanisms Conference held in Princeton, NJ, in 1960Google Scholar
  142. 142.
    H.L. Frisch, E. Wasserman, J. Am. Chem. Soc. 83, 3789 (1961)Google Scholar
  143. 143.
    D.M. Walba, Tetrahedron 41, 3161 (1985)Google Scholar
  144. 144.
    J.-P. Sauvage, Acc. Chem. Res. 23, 319 (1990)Google Scholar
  145. 145.
    R. Bez, Microelectron. Eng. 80, 249 (2005)Google Scholar
  146. 146.
    R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics (Addison Wesley, Reading, MA, 1989), Chap. 46Google Scholar
  147. 147.
    A. Vologodskii, Phys. Life Rev. 23, 119 (2006)Google Scholar
  148. 148.
    N. Thomas, R.A. Thornhill, J. Phys. D: Appl. Phys. 31, 253 (1998)Google Scholar
  149. 149.
    C. Mavroidis, A. Dubey, M.L. Yarmush, Annu. Rev. Biomed. Eng. 6, 363 (2004)Google Scholar
  150. 150.
    A. Hjelmfelt, J. Ross, Physica D 84, 180 (1995)Google Scholar
  151. 151.
    L. Hood, J.R. Heath, M.E. Phelps, B. Lin, Science 306, 640 (2004)Google Scholar
  152. 152.
    M.G.L. van der Huvel, C. Dekker, Science 317, 333 (2007)Google Scholar
  153. 153.
    G.F. Cerofolini, G. Ferla, A. Foglio Para, Giorn. Fis. 23, 863 (1982)Google Scholar
  154. 154.
    M. Grattarola, A. Cambiaso, S. Cenderelli, G. Parodi, M. Tedesco, B. Die, G.F. Cerofolini, L. Meda, S. Solmi, in Molecular Electronics: Biosensors and Biocomputers, ed. by F.T. Hong (Plenum, New York, 1989), p. 297Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.STMicroelectronicsAgrate Brianza MIItaly
  2. 2.CNISM and Department of Materials ScienceUniversity of Milano–BicoccaMilano MIItaly

Personalised recommendations