Applied Physics A

, Volume 91, Issue 2, pp 235–240 | Cite as

Periodic arrays of submicron Si and Ni dots on SiO2 fabricated using linearly polarized Nd:YAG pulsed laser



Periodic arrays of submicron Si and Ni dots were fabricated by only irradiating a linearly polarized Nd:YAG pulsed laser beam to Si and Ni thin films deposited on silicon dioxide (SiO2) film. The interference between an incident beam and a scattered surface wave leads to the spatial periodicity of beam energy density distribution on the surface of the irradiated samples. A thin film was melted using a laser beam, and the molten film was split and condensed owing to its surface tensile according to the periodic energy density distribution. Then, the fine lines (line and space structure) were formed periodically. After the formation of fine lines, the sample was rotated by 90°, and the laser beam was irradiated. The periodic energy density distribution was generated on the fine lines, and the lines were split and condensed. Eventually, the periodically aligned submicron dots were fabricated on the SiO2 film.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.N. Maracas, G.L. Harris, C.A. Lee, R.A. McFarlane, Appl. Phys. Lett. 33, 453 (1978)CrossRefADSGoogle Scholar
  2. 2.
    H.J. Leamy, G.A. Rozgonyi, T.T. Sheng, G.K. Celler, Appl. Phys. Lett. 32, 535 (1978)CrossRefADSGoogle Scholar
  3. 3.
    M. Oron, G. Sorensen, Appl. Phys. Lett. 35, 782 (1979)CrossRefADSGoogle Scholar
  4. 4.
    J.F. Young, J.E. Sipe, J.S. Preston, H.M. van Driel, Appl. Phys. Lett. 41, 261 (1982)CrossRefADSGoogle Scholar
  5. 5.
    A.J. Pedraza, Y.F. Guan, J.D. Fowlkes, D.A. Smith, J. Vac. Sci. Technol. B 22, 2823 (2004)CrossRefGoogle Scholar
  6. 6.
    Y.F. Guan, A.J. Pedraza, J.D. Fowlkes, D.A. Smith, J. Vac. Sci. Technol. B 22, 2836 (2004)CrossRefGoogle Scholar
  7. 7.
    S.R.J. Brueck, D.J. Ehrlich, Phys. Rev. Lett. 48, 1678 (1982)CrossRefADSGoogle Scholar
  8. 8.
    N.R. Isenor, Appl. Phys. Lett. 31, 148 (1977)CrossRefADSGoogle Scholar
  9. 9.
    A.K. Jain, V.N. Kulkarni, D.K. Sood, J.S. Uppal, J. Appl. Phys. 52, 4882 (1981)CrossRefADSGoogle Scholar
  10. 10.
    P.E. Dyer, R.J. Farley, Appl. Phys. Lett. 57, 765 (1990)CrossRefADSGoogle Scholar
  11. 11.
    Y. Wang, T. Natsui, Y. Makita, A. Kumano, Y. Takeuchi, IEICE Trans. Electron. E 83-C, 1553 (2000)Google Scholar
  12. 12.
    J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 27, 1155 (1983)CrossRefADSGoogle Scholar
  13. 13.
    T.D. Lee, H.W. Lee, J.K. Kim, C.O. Park, Appl. Phys. A 48, 475 (1989)CrossRefADSGoogle Scholar
  14. 14.
    C.H. Oh, M. Ozawa, M. Matsumura, Japan. J. Appl. Phys. 37, L492 (1997)CrossRefGoogle Scholar
  15. 15.
    J.Y. Park, H.H. Park, K.Y. Lee, H.K. Chung, Japan. J. Appl. Phys. 43, 1280 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Y. Nakata, T. Okada, M. Maeda, Appl. Phys. Lett. 81, 4239 (2002)CrossRefADSGoogle Scholar
  17. 17.
    Y. Nakata, T. Okada, M. Maeda, Appl. Phys. A 77, 399 (2003)CrossRefADSGoogle Scholar
  18. 18.
    T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, Appl. Phys. Lett. 82, 2758 (2003)CrossRefADSGoogle Scholar
  19. 19.
    S. Horita, Y. Nakata, A. Shimoyama, Appl. Phys. Lett. 78, 2250 (2001)CrossRefADSGoogle Scholar
  20. 20.
    D.K. Fork, G.B. Anderson, J.B. Boyce, R.I. Johnson, P. Mei, Appl. Phys. Lett. 68, 2138 (1996)CrossRefADSGoogle Scholar
  21. 21.
    A. Shih, C.Y. Meng, S.C. Lee, J. Appl. Phys. 88, 3725 (2000)CrossRefADSGoogle Scholar
  22. 22.
    K. Nishioka, S. Horita, Japan. J. Appl. Phys. 46, 4154 (2007)CrossRefADSGoogle Scholar
  23. 23.
    H. Kumagai, M. Ezaki, K. Toyoda, M. Obara, Japan. J. Appl. Phys. 31, L928 (1992)CrossRefADSGoogle Scholar
  24. 24.
    M. Hirano, K. Kawamura, H. Hosono, Appl. Surf. Sci. 197/198, 699 (2002)Google Scholar
  25. 25.
    M. Bolle, S. Lazare, J. Appl. Phys. 73, 3516 (1993)CrossRefADSGoogle Scholar
  26. 26.
    N. Eustathopolous, B. Drevet, Mater. Sci. Eng. A 249, 176 (1998)CrossRefGoogle Scholar
  27. 27.
    H. Fujii, M. Yamamoto, S. Hara, K. Nogi, J. Mater. Sci. 34, 3165 (1999)CrossRefGoogle Scholar
  28. 28.
    S.J. Henley, J.D. Carey, S.R.P. Silva, Phys. Rev. B 72, 195408 (2005)CrossRefADSGoogle Scholar
  29. 29.
    V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Graduate School of Materials ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations