Advertisement

Applied Physics A

, Volume 91, Issue 2, pp 223–228 | Cite as

A continuous synthesis of carbon nanotubes by dc thermal plasma jet

  • M. Bystrzejewski
  • A. Huczko
  • H. Lange
  • W.W. Płotczyk
  • R. Stankiewicz
  • T. Pichler
  • T. Gemming
  • M.H. Rümmeli
Article

Abstract

In this contribution we present a dc thermal plasma jet route for the continuous synthesis of single- and multi- walled carbon nanotubes. Our findings show the as produced product to be dependent on the plasma atmosphere and catalyst. Multi walled carbon nanotubes can be synthesized without a catalyst. Single walled carbon nanotubes require the presence of a catalyst (Ni-Ce) and the addition of hydrogen to the buffer gas. Increasing the amount of hydrogen added to the reaction significantly improves the nanotube yield.

Keywords

Carbon Nanotubes Radial Breathing Mode Sublimation Rate Carbon Vapor Continuous Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hahn, J.H. Han, J.E. Yoo, H.Y. Jung, J.S. Suh, Carbon 42, 877 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Hahn, H.Y. Jung, D.W. Kang, J.E. Yoo, J.S. Suh, Carbon 42, 3024 (2004)CrossRefGoogle Scholar
  3. 3.
    D. Harbec, J.L. Meunier, L. Guo, R. Gauvin, N. El Mallah, J. Phys. D Appl. Phys. 37, 2121 (2004)CrossRefADSGoogle Scholar
  4. 4.
    J. Hahn, S.B. Heo, J.H. Suh, Carbon 43, 2638 (2005)CrossRefGoogle Scholar
  5. 5.
    L. Fulcheri, T.M. Gruenberger, J.G. Aguilar, F. Fabry, E. Griven, N. Probst, G. Flamant, H. Okuno, J.C. Charlier, High Technol. Plasma Process. 125, 119 (2004)Google Scholar
  6. 6.
    Y. Tian, Y. Zhang, B. Wang, W. Ji, Y. Zhang, K. Xie, Carbon 42, 2597 (2004)CrossRefGoogle Scholar
  7. 7.
    H. Okuno, E. Grivei, F. Fabry, T.M. Gruenberger, J. Gonzalez-Aguilar A. Palnichenko, L. Fulcheri, N. Probst, J.C. Charlier, Carbon 42, 2543 (2004)CrossRefGoogle Scholar
  8. 8.
    G. Cota-Sanchez, G. Soucy, A. Huczko, H. Lange, Carbon 43, 3153 (2005)CrossRefGoogle Scholar
  9. 9.
    S. Yugeswaran, V. Selvarajan, Vacuum 81, 347 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Abdelli-Messaci, T. Kerdja, A. Bendib, S.M. Aberkane, S. Lafane, S. Malek, Appl. Surf. Sci. 252, 2012 (2005)CrossRefADSGoogle Scholar
  11. 11.
    R.B. Little, J. Cluster Sci. 14, 135 (2003)Google Scholar
  12. 12.
    H. Lange, A. Huczko, New Diamond Front. Carbon Technol. 11, 399 (2001)Google Scholar
  13. 13.
    H. Lange, K. Saidane, M. Razafinimanana, A. Gleizes, J. Phys. D Appl. Phys. 32, 1024 (1999)CrossRefADSGoogle Scholar
  14. 14.
    W.W. Płotczyk, Efect of quenching temperature of the reaction on the synthesis of acetylene from methane in hydrogen plasma jet, ISPC-6, Symp. Proc., ed. by M.I. Boulos, R.J. Munz (1983)Google Scholar
  15. 15.
    W.W. Płotczyk, Thermodynamic models of acetylene synthesis in an argon plasma jet, ISPC-7 Symp. Proc., ed. by C.J. Timmermans, 280–5 (1985)Google Scholar
  16. 16.
    H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, Eur. Phys. J. B 22, 307 (2001)CrossRefADSGoogle Scholar
  17. 17.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361 (2002)CrossRefADSGoogle Scholar
  18. 18.
    B. Liu, T. Wagberg, E. Olsson, R. Yang, H. Li, S. Zhang, H. Yang, G. Zou, B. Sundqvist, Chem. Phys. Lett. 320, 365 (2002)CrossRefGoogle Scholar
  19. 19.
    A. Huczko, H. Lange, M. Bystrzejewski, M. Sioda, M. Pacheco, M. Razafinimanana, AIP Conf. Proc. 685, 73 (2003)CrossRefADSGoogle Scholar
  20. 20.
    A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Spectrochim. Acta B 57, 609 (2002)CrossRefADSGoogle Scholar
  21. 21.
    H. Lange, M. Bystrzejewski, H. Huczko, Diam. Relat. Mater. 15, 1113 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Huczko, H. Lange, M. Bystrzejewski, Y. Ando, J. Nanosci. Nanotechnol. 6, 1319 (2006)CrossRefGoogle Scholar
  23. 23.
    O.A. Louchev, T. Laude, Y. Sato, H. Kanda, J. Chem. Phys. 118, 7622 (2003)CrossRefADSGoogle Scholar
  24. 24.
    O.A. Louchev, J.R. Hester, J. Appl. Phys. 94, 2002 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Q.H. Yang, Y. Tong, C. Liu, F. Li, H.M. Cheng, Carbon 43, 2027 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Bystrzejewski
    • 1
  • A. Huczko
    • 1
  • H. Lange
    • 1
  • W.W. Płotczyk
    • 1
  • R. Stankiewicz
    • 1
  • T. Pichler
    • 2
  • T. Gemming
    • 2
  • M.H. Rümmeli
    • 2
  1. 1.Department of ChemistryWarsaw UniversityWarsawPoland
  2. 2.IFW DresdenDresdenGermany

Personalised recommendations