Applied Physics A

, Volume 90, Issue 4, pp 633–636 | Cite as

Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L

  • C.R. Mendonca
  • D.S. Correa
  • T. Baldacchini
  • P. Tayalia
  • E. Mazur
Article

Abstract

Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kawata, Y. Kawata, Chem. Rev. 100, 1777 (2000)CrossRefGoogle Scholar
  2. 2.
    A.S. Dvornikov, P.M. Rentzepis, Opt. Commun. 119, 341 (1995)CrossRefADSGoogle Scholar
  3. 3.
    D.A. Parthenopoulos, P.M. Rentzepis, J. Appl. Phys. 68, 5814 (1990)CrossRefADSGoogle Scholar
  4. 4.
    D.A. Parthenopoulos, P.M. Rentzepis, Science 245, 843 (1989)CrossRefADSGoogle Scholar
  5. 5.
    C. Xu, W. Zipfel, J.B. Shear, R.M. Williams, W.W. Webb, Proc. Nat. Acad. Sci. USA 93, 10763 (1996)CrossRefADSGoogle Scholar
  6. 6.
    P.T.C. So, C.Y. Dong, B.R. Masters, K.M. Berland, Ann. Rev. Biomed. Eng. 2, 399 (2000)Google Scholar
  7. 7.
    J.D. Bhawalkar, G.S. He, P.N. Prasad, Rep. Prog. Phys. 59, 1041 (1996)CrossRefADSGoogle Scholar
  8. 8.
    T.J. Dougherty, B.W. Henderson, S. Schwartz, J.W. Winkelman, R.L. Lipson, In: Photodynamic Therapy, ed. by B.W. Henderson, T.J. Dougherty (Marcel Dekker, New York, 1992), p. 1Google Scholar
  9. 9.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001)CrossRefADSGoogle Scholar
  10. 10.
    H.B. Sun, S. Kawata, Nmr – 3d Analysis – Photopolymerization (Springer, Berlin, 2004), p. 169Google Scholar
  11. 11.
    M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, H. Misawa, Appl. Phys. A 73, 561 (2001)CrossRefADSGoogle Scholar
  12. 12.
    M.P. Joshi, H.E. Pudavar, J. Swiatkiewicz, P.N. Prasad, B.A. Reianhardt, Appl. Phys. Lett. 74, 170 (1999)CrossRefADSGoogle Scholar
  13. 13.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J.Q. Qin, H. Rockel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51 (1999)CrossRefADSGoogle Scholar
  14. 14.
    P. Galajda, P. Ormos, Appl. Phys. Lett. 78, 249 (2001)CrossRefADSGoogle Scholar
  15. 15.
    T. Watanabe, M. Akiyama, K. Totani, S.M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S.R. Marder, J.W. Perry, Adv. Funct. Mater. 12, 611 (2002)CrossRefGoogle Scholar
  16. 16.
    Z. Bayindir, Y. Sun, M.J. Naughton, C.N. LaFratta, T. Baldacchini, J.T. Fourkas, J. Stewart, B.E.A. Saleh, M.C. Teich, Appl. Phys. Lett. 86, 064105 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Serbin, A. Ovsianikov, B. Chichkov, Opt. Express 12, 5221 (2004)CrossRefADSGoogle Scholar
  18. 18.
    S.M. Kuebler, K.L. Braun, W.H. Zhou, J.K. Cammack, T.Y. Yu, C.K. Ober, S.R. Marder, J.W. Perry, J. Photochem. Photobiol. A 158, 163 (2003)CrossRefGoogle Scholar
  19. 19.
    K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, D.J. Hagan, J. Photochem. Photobiol. A 162, 497 (2004)CrossRefGoogle Scholar
  20. 20.
    T. Baldacchini, C.N. LaFratta, R.A. Farrer, M.C. Teich, B.E.A. Saleh, M.J. Naughton, J.T. Fourkas, J. Appl. Phys. 95, 6072 (2004)CrossRefADSGoogle Scholar
  21. 21.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990)CrossRefGoogle Scholar
  22. 22.
    I.J. Blewett, J. Stokes, A. Tookey, A.K. Kar, B.S. Wherrett, Opt. Laser Technol. 29, 355 (1997)CrossRefGoogle Scholar
  23. 23.
    R.R. Birge, B. Parsons, Q.W. Song, J.R. Tallent, In: Molecular Electronics, ed. by J. Jortner, M. Ratner (Blackwell Science, London, 1997)Google Scholar
  24. 24.
    W.L. Peticola, Ann. Rev. Phys. Chem. 18, 233 (1967)CrossRefGoogle Scholar
  25. 25.
    L. Antonov, K. Kamada, K. Ohta, F.S. Kamounah, Phys. Chem. Chem. Phys. 5, 1193 (2003)CrossRefGoogle Scholar
  26. 26.
    D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics – An Introduction to Radiation Molecule Interation (Dover Publications, New York, 1998)Google Scholar
  27. 27.
    M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985)CrossRefGoogle Scholar
  28. 28.
    J. Ridley, M. Zerner, Theoret. Chim. Acta 32, 111 (1973)Google Scholar
  29. 29.
    J.W. Perry, M. Albota, S. Ananthavel, D. Beljonne, J.L. Bredas, B. Cumpston, D.L. Dyer, J.E. Ehlrich, A.A. Heikal, S.E. Hess, T. Kogej, S.M. Kuebler, I.Y.S. Lee, M.D. Levin, S.R. Marder, D. McCord-Maughon, H. Rockel, M. Rumi, G. Subramanian, W.W. Webb, X.L. Wu, C. Xu, Abstr. Pap. Am. Chem. Soc. 217, U378 (1999)Google Scholar
  30. 30.
    M. Albota, D. Beljone, J.L. Breda, J.E. Ehrlich, J.Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levin, S. Marder, D. McCord-Maughon, J.W. Perry, H. Rockel, M. Rumi, G. Subramanian, W.W. Webb, X.L. Wu, C. Xu, Science 281, 1653 (1998)CrossRefADSGoogle Scholar
  31. 31.
    C.S. Colley, D.C. Grills, N.A. Besley, S. Jockusch, P. Matousek, A.W. Parker, M. Towrie, N.J. Turro, P.M.W. Gill, M.W. George, J. Am. Chem. Soc. 124, 14952 (2002)CrossRefGoogle Scholar
  32. 32.
    N.J. Turro, Modern Molecular Photochemistry (University Science Books, Sausalito, 1991)Google Scholar
  33. 33.
    K.D. Belfield, K.J. Schafer, Y.U. Liu, J. Liu, X.B. Ren, E.W. Van Stryland, J. Phys. Organ. Chem. 13, 837 (2000)Google Scholar
  34. 34.
    W.H. Zhou, S.M. Kuebler, K.L. Braun, T.Y. Yu, J.K. Cammack, C.K. Ober, J.W. Perry, S.R. Marder, Science 296, 1106 (2002)CrossRefADSGoogle Scholar
  35. 35.
    C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, P.L. Baldeck, Chem. Phys. Lett. 362, 291 (2002)CrossRefGoogle Scholar
  36. 36.
    A. Bhaskar, G. Ramakrishna, Z.K. Lu, R. Twieg, J.M. Hales, D.J. Hagan, E. Van Stryland, T. Goodson, J. Am. Chem. Soc. 128, 11840 (2006)CrossRefGoogle Scholar
  37. 37.
    S.L. Oliveira, D.S. Correa, L. Misoguti, C.J.L. Constantino, R.F. Aroca, S.C. Zilio, C.R. Mendonca, Adv. Mater. 17, 1890 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • C.R. Mendonca
    • 1
    • 2
  • D.S. Correa
    • 1
  • T. Baldacchini
    • 2
  • P. Tayalia
    • 2
  • E. Mazur
    • 2
  1. 1.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Department of Physics and Harvard School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations