Applied Physics A

, Volume 90, Issue 3, pp 581–589 | Cite as

Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics

  • A.K. Chauhan
  • D.K. Aswal
  • S.P. Koiry
  • S.K. Gupta
  • J.V. Yakhmi
  • C. Sürgers
  • D. Guerin
  • S. Lenfant
  • D. Vuillaume
Article

Abstract

We report the deposition of 3-aminopropyltrimethoxysilane (APTMS) multilayers on SiOx/Si(p++) substrates by a layer-by-layer self-assembly process. The multilayers were grafted in a glove box having nitrogen ambient with both humidity and oxygen contents <1 ppm using APTMS solutions prepared in an anhydrous toluene. Deposition of the multilayers has been carried out as a function of solution concentration and grafting time. Characterization of the multilayers using static de-ionized water contact angle, ellipsometry, X-rayphotoelectron spectroscopy and atomic force microscope measurements revealed that self-assembling of the multilayers takes place in two distinct stages: (i) the first APTMS monolayer chemisorbs on a hydroxylated oxide surface by a silanization process and, (ii) the surface amino group of the first monolayer chemisorbs the hydrolyzed silane group of other APTMS molecules present in the solution, leading to the formation of a bilayer. The second stage is a self-replicating process that results in the layer-by-layer self-assembly of the multilayers with trapped NH3+ ions. The current–voltage characteristics of the multilayers exhibit a hysteresis effect along with a negative differential resistance, suggesting their potential application in the molecular memory devices. A possible mechanism for the observed hysteresis effect based on filling and de-filling of the NH3+ acting as traps is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, D. Vuillaume, Anal. Chim. Acta 568, 84 (2006) and references thereinCrossRefGoogle Scholar
  2. 2.
    D. Vuillaume, J. Nanosci. Nanotechnol. 2, 267 (2002)CrossRefGoogle Scholar
  3. 3.
    S. Lenfant, C. Krzeminski, C. Delerue, G. Aallan, D. Vuillaume, Nano Lett. 3, 741 (2003)CrossRefADSGoogle Scholar
  4. 4.
    N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam, Nano Lett. 4, 55 (2004)CrossRefADSGoogle Scholar
  5. 5.
    Z. Liu, A.A. Yasseri, J.S. Lindsey, D.F. Bocian, Science 302, 1543 (2003)CrossRefADSGoogle Scholar
  6. 6.
    International Technology Roadmap for Semiconductors (IRTS),http://www.itrs.net/reports.html (2006)Google Scholar
  7. 7.
    J.B. Brzoska, I.B. Azouz, F. Rondelez, Langmuir 10, 4367 (1994)CrossRefGoogle Scholar
  8. 8.
    S.R. Wasserman, Y.-T. Tao, G.M. Whitesides, Langmuir 5, 1074 (1989)CrossRefGoogle Scholar
  9. 9.
    K. Kojio, S. Ge, A. Takahara, T. Kajiyama, Langmuir 14, 971 (1998)CrossRefGoogle Scholar
  10. 10.
    I. Doudevski, W.A. Hayes, D.K. Schwartz, Phys. Rev. Lett. 81, 4927 (1998)CrossRefADSGoogle Scholar
  11. 11.
    D.K. Schwartz, S. Steinberg, J. Israelachvili, J.A.N. Zasadzinski, Phys. Rev. Lett. 69, 3354 (1992)CrossRefADSGoogle Scholar
  12. 12.
    J. Collet, O. Tharaud, A. Chapoton, D. Vuillaume, Appl. Phys. Lett. 76, 1941 (2000)CrossRefADSGoogle Scholar
  13. 13.
    M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger, M. Brunnbauer, F. Stellacci, Nature 43, 963 (2004)CrossRefADSGoogle Scholar
  14. 14.
    D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, D. Vuillaume, Small 1, 725 (2005)CrossRefGoogle Scholar
  15. 15.
    R. Maoz, S. Matlis, E. DiMasi, B.M. Ocko, J. Sagiv, Nature 384, 150 (1996)CrossRefADSGoogle Scholar
  16. 16.
    R. Maoz, J. Sagiv, D. Degenhardt, H. Miihwald, P. Quint, Supramol. Sci. 2, 9 (1995)CrossRefGoogle Scholar
  17. 17.
    A. Wang, H. Tang, T. Cao, S.O. Salley, K.Y. Ng, J. Colloid Interf. Sci. 291, 438 (2005)CrossRefGoogle Scholar
  18. 18.
    R. Denoyel, J.C. Glez, P. Trens, Colloid Surf. A 197, 213 (2002)CrossRefGoogle Scholar
  19. 19.
    T.J. Horr, P.S. Arora, Colloid Surf. A 126, 113 (1997)CrossRefGoogle Scholar
  20. 20.
    A.V. Krasnoslobodtsev, S.N. Smirnov, Langmuir 18, 3181 (2002)CrossRefGoogle Scholar
  21. 21.
    G.C. Allen, F. Sorbello, C. Altavilla, A. Castorina, E. Ciliberto, Thin Solid Films 483, 306 (2005)CrossRefADSGoogle Scholar
  22. 22.
    D.F. Petri, G. Wenz, P. Schunk, T. Schimmel, Langmuir 15, 4520 (1999)CrossRefGoogle Scholar
  23. 23.
    D. Quere, Nature Mater. 1, 14 (2002)CrossRefADSGoogle Scholar
  24. 24.
    K.S. Taton, P.E. Guire, Colloid Surf. B 24, 123 (2002)Google Scholar
  25. 25.
    N.P. Haung, R. Michel, J. Voros, M. Textor, R. Hofer, A. Rossi, D.L. Elbert, J.A. Hubbell, N.D. Spencer, Langmuir 17, 489 (2001)CrossRefGoogle Scholar
  26. 26.
    J. Chastain, R.C. King Jr. (Eds.), Handbook of Photoelectron Spectroscopy (Physical Electronics, Minnesota, USA, 1995), p. 57Google Scholar
  27. 27.
    H.L. Cabibil, V. Pham, J. Lozano, H. Celio, R.M. Winter, J.M. White, Langmuir 16, 10471 (2000)CrossRefGoogle Scholar
  28. 28.
    S.M. Kanan, W.T.Y. Tze, C.P. Tripp, Langmuir 18, 6623 (2002)CrossRefGoogle Scholar
  29. 29.
    J. Beckmann, S.J. Grabowsky, Phys. Chem. A 111, 2011 (2007)Google Scholar
  30. 30.
    G.S. Caravajal, D.E. Leyden, G.R. Quinting, G.E. Maciel, Anal. Chem. 60, 1776 (1988)CrossRefGoogle Scholar
  31. 31.
    M. Xu, D. Liu, H.C. Allen, Environ. Sci. Technol. 40, 1566 (2006)CrossRefGoogle Scholar
  32. 32.
    J.G. Simmons, J. Appl. Phys. 34, 2581 (1963)MATHCrossRefADSGoogle Scholar
  33. 33.
    A. Salomon, D. Cahen, S.M. Lindsay, J. Tomfohr, V.B. Engelkes, C.D. Frisbie, Adv. Mater. 15, 1881 (2003)CrossRefGoogle Scholar
  34. 34.
    N.J. Tao, Phys. Rev. Lett. 76, 4066 (1996)CrossRefADSGoogle Scholar
  35. 35.
    T. Rakshit, G.C. Liang, A.W. Ghosh, S. Datta, Nano Lett. 4, 1803 (2004)CrossRefADSGoogle Scholar
  36. 36.
    Y. Karzazi, J. Cornil, J.L. Bredas, J. Am. Chem. Soc. 123, 10076 (2001)CrossRefGoogle Scholar
  37. 37.
    R.A. Wassel, G.M. Credo, R.R. Fuierer, D.L. Feldheim, C.B. Gorman, J. Am. Chem. Soc. 126, 295 (2004)CrossRefGoogle Scholar
  38. 38.
    E. Tran, M.A. Rampi, G.M. Whitesides, Angew. Chem. Int. Edit. 43, 3835 (2004)CrossRefGoogle Scholar
  39. 39.
    Y. Xue, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Phys. Rev. B 59, R7853 (1999)CrossRefADSGoogle Scholar
  40. 40.
    Y. Selzer, A. Salomon, J. Ghabboun, D. Cahen, Angew. Chem. Int. Edit. 41, 827 (2002)CrossRefGoogle Scholar
  41. 41.
    A. Salomon, R. Arad-Yellin, A. Shanzer, A. Karton, D. Cahen, J. Am. Chem. Soc. 126, 11648 (2004)CrossRefGoogle Scholar
  42. 42.
    M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 78, 3735 (2001)CrossRefADSGoogle Scholar
  43. 43.
    A. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, Y. Yao, J.M. Rour, R. Sashidhar, B.R. Ratna, Nature Mater. 4, 167 (2005)CrossRefADSGoogle Scholar
  44. 44.
    E. Tran, M. Duati, V. Ferri, K. Müllen, M. Zharnikov, G.M. Whitesides, M.A. Rampi, Adv. Mater. 18, 1323 (2006)CrossRefGoogle Scholar
  45. 45.
    C. Zeng, H. Wang, B. Wang, J. Yang, J.G. Hou, Appl. Phys. Lett. 77, 3595 (2000)CrossRefADSGoogle Scholar
  46. 46.
    M. Grobis, A. Wachowiak, R. Yamachika, M.F. Crommie, Appl. Phys. Lett. 86, 204102 (2005)CrossRefADSGoogle Scholar
  47. 47.
    J.G. Simmons, R.V. Verderber, Proc. R. Soc. London 301, 77 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A.K. Chauhan
    • 1
  • D.K. Aswal
    • 1
  • S.P. Koiry
    • 1
  • S.K. Gupta
    • 1
  • J.V. Yakhmi
    • 1
  • C. Sürgers
    • 2
  • D. Guerin
    • 3
  • S. Lenfant
    • 3
  • D. Vuillaume
    • 3
  1. 1.Technical Physics and Prototype Engineering DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Physikalisches Institut and Center for Functional NanostructuresUniversität KarlsruheKarlsruheGermany
  3. 3.Molecular Nanostructures and Devices GroupInstitut d’Electronique, Microelectronique et Nanotechnologie – CNRSVilleneuve d’Ascq CedexFrance

Personalised recommendations