Applied Physics A

, Volume 90, Issue 4, pp 701–704 | Cite as

Effect of sputtered Cu film’s diffusion barrier on the growth and field emission properties of carbon nanotubes by chemical vapor deposition

  • Lili Wang
  • Ting Chen
  • Tao Feng
  • Yiwei Chen
  • Wenxiu Que
  • Lifeng Lin
  • Zhuo Sun


Growth of carbon nanotube (CNT) films with good field emission properties on glass is very important for low cost field emission display (FED) applications. In addition to Ni, Co and Fe, Cu can be a good catalyst for CNT growth on glass, but due to diffusion into SiO2 it is difficult to control the CNTs density and uniformity. In this paper, four metal barrier layers (W, Ni, Cr, Ti) were deposited by dc magnetron sputtering on glass to reduce the Cu diffusion. As-grown CNT films showed various morphologies with the use of different barrier metals. CNTs with uniform distribution and better crystallinity can be synthesized only on Ti/Cu and W/Cu. Voltage current measurements indicate that better field emission properties of CNT films can be obtained on titanium and tungsten barriered Cu, while chromium and nickel are not suitable barrier candidates for copper in CNT-FED applications because of the reduced emission performance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995)CrossRefADSGoogle Scholar
  2. 2.
    Y. Chen, S. Patel, Y. Ye, D.T. Shaw, L. Guo, Appl. Phys. Lett. 73, 2119 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Q.H. Wang, M. Tan, R.P.H. Chang, Appl. Phys. Lett. 78, 1294 (2001)CrossRefADSGoogle Scholar
  4. 4.
    X. Xu, G.R. Brandes, Appl. Phys. Lett. 74, 2549 (1999)CrossRefADSGoogle Scholar
  5. 5.
    W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Appl. Phys. Lett. 75, 3129 (1999)CrossRefADSGoogle Scholar
  6. 6.
    R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Chem. Phys. Lett. 303, 467 (1999)CrossRefGoogle Scholar
  7. 7.
    A.C. Cassell, J.A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 103, 6484 (1999)CrossRefGoogle Scholar
  8. 8.
    O. Gröning, O.M. Küttel, C. Emmenegger, P. Gröning, L. Schlapbach, J. Vac. Sci. Technol. B 18, 665 (2000)CrossRefGoogle Scholar
  9. 9.
    J.-M. Bonard, M. Croci, I. Arfaoui, O. Noury, D. Sarangi, A. Châtelain, Diam. Relat. Mater. 11, 763 (2002)CrossRefGoogle Scholar
  10. 10.
    L. Nilsson, O. Gröning, P. Gröning, O. Küttel, L. Schlapbach, Proc. of the XVI International Winterschool on Electronic Properties of Novel Materials, Kirchberg, Austria 544(1), 499 (2000)Google Scholar
  11. 11.
    C. Liu, A.J. Cheng, M. Clark, Y. Tzeng, Diam. Relat. Mater. 14, 835 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Hu, K.F. Huo, H. Chen, Y.N. Lu, L. Xu, Z. Hu, Y. Chen, Mater. Chem. Phys. 100, 477 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Zhao, H. Nakano, H. Murakami, T. Sugai, H. Shinohara, Y. Saito, Appl. Phys. A 85, 103 (2006)CrossRefADSGoogle Scholar
  14. 14.
    X. Lin, X.K. Wang, V.P. Dravid, R.P.H. Chang, J.B. Ketterson, Appl. Phys. Lett. 64, 181 (1994)CrossRefADSGoogle Scholar
  15. 15.
    C.-H. Kiang, W.A. Goddard III, R. Geyers, J.R. Salem, D.S. Bethune, J. Phys. Chem. 98, 6612 (1994)CrossRefGoogle Scholar
  16. 16.
    C.H. Kiang, P.H.M. van Loosdrecht, R. Beyers, J.R. Salem, D.S. Bethune, W.A. Goddard III, H.C. Dorn, P. Burbank, S. Stevenson, Surf. Rev. Lett. 3, 765 (1996)Google Scholar
  17. 17.
    J.H. Han, S.H. Choi, T.Y. Lee, J.B. Yoo, C.Y. Park, T. Jung, S.G. Yu, W. Yi, I.T. Han, J.M. Kim, Diam. Relat. Mater. 12, 878 (2003)CrossRefGoogle Scholar
  18. 18.
    H.Y. Miao, J.T. Lue, T.S.Y. Chen, S.K. Chen, M.S. Ouyang, Thin Solid Films 484, 58 (2005)CrossRefGoogle Scholar
  19. 19.
    Y. Qin, Z.K. Zhang, Z.L. Cui, Carbon 41, 3072 (2003)CrossRefGoogle Scholar
  20. 20.
    Y. Qin, Q. Zhang, Z.L. Cui, J. Catal. 223, 389 (2004)CrossRefGoogle Scholar
  21. 21.
    A.M. Rao, A. Jorio, M.A. Pimenta, M.S.S. Dantas, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 84, 1820 (2000)CrossRefADSGoogle Scholar
  22. 22.
    S. Zhu, C. Su, J.C. Cochrane, S. Lechoczky, Y. Cui, A. Burger, J. Cryst. Growth 234, 584 (2002)CrossRefGoogle Scholar
  23. 23.
    J.H. Han, W.S. Yang, J.B. Yoo, C.Y. Park, J. Appl. Phys. 88, 7363 (2000)CrossRefADSGoogle Scholar
  24. 24.
    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)CrossRefADSGoogle Scholar
  25. 25.
    Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G.S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76, 2367 (2000)CrossRefADSGoogle Scholar
  26. 26.
    Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, Y.H. Lee, B.S. Lee, D.C. Chung, J. Appl. Phys. 88, 4898 (2000)CrossRefADSGoogle Scholar
  27. 27.
    C.J. Lee, S.C. Lyu, Y.R. Cho, J.H. Lee, K.I. Cho, Chem. Phys. Lett. 341, 245 (2001)CrossRefGoogle Scholar
  28. 28.
    P. Bai, B.D. Gittleman, B.X. Sun, J.F. McDonald, T.M. Lu, M.J. Costa, Appl. Phys. Lett. 60, 1824 (1992)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lili Wang
    • 1
  • Ting Chen
    • 1
  • Tao Feng
    • 1
  • Yiwei Chen
    • 1
  • Wenxiu Que
    • 1
  • Lifeng Lin
    • 1
  • Zhuo Sun
    • 1
  1. 1.Department of Physics, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of EducationEast China Normal UniversityShanghaiP.R. China

Personalised recommendations