Advertisement

Applied Physics A

, Volume 90, Issue 4, pp 689–694 | Cite as

Thermal modeling of laser-annealing-induced crystallization of amorphous NiTi thin films

  • Xi Wang
  • Yves Bellouard
  • Zhenyu Xue
  • Joost J. VlassakEmail author
Article

Abstract

Laser annealing of shape memory alloy thin films provides new opportunities in actuator design and fabrication for microelectromechanical systems applications. In this paper, we present a three-dimensional thermal model to simulate the crystallization process when a laser beam is swept across an amorphous NiTi thin film. Experimental crystallite nucleation and growth rates are included in the model to enable prediction of the size of the crystallized region as a function of laser annealing parameters. The model can also be used to study the crystallization of other material systems by means of laser annealing.

Keywords

Martensite Laser Power Shape Memory Alloy Laser Annealing Heat Transfer Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Busch, A.D. Johnson, C.H. Lee, D.A. Stevenson, J. Appl. Phys. 68, 6224 (1990)CrossRefADSGoogle Scholar
  2. 2.
    J.A. Walker, K.J. Gabriel, M. Mehregany, Sens. Actuators A 2123, 243 (1990)Google Scholar
  3. 3.
    A. Ishida, A. Takei, S. Miyazaki, Thin Solid Films 228, 210 (1993)CrossRefADSGoogle Scholar
  4. 4.
    R.H. Wolf, A.H. Heuer, J. Microelectromech. Syst. 4, 206 (1995)CrossRefGoogle Scholar
  5. 5.
    D.S. Grummon, L. Hou, Z. Zhao, J. Phys. IV 5, 665 (1995)Google Scholar
  6. 6.
    S. Miyazaki, A. Ishida, Mater. Sci. Eng. A 273275, 106 (1999)Google Scholar
  7. 7.
    C.L. Shih, B.K. Lai, H. Kahn, S.M. Phillips, A.H. Heuer, J. Microelectromech. Syst. 10, 69 (2001)Google Scholar
  8. 8.
    M. Nishida, T. Honma, Scr. Metall. 18, 1293 (1984)CrossRefGoogle Scholar
  9. 9.
    H. Scherngell, A.C. Kneissl, Scr. Mater. 35, 205 (1998)Google Scholar
  10. 10.
    Y. Bellouard, T. Lehnert, J.E. Bideaux, T. Sidler, R. Clavel, R. Gotthardt, Mater. Sci. Eng. A 273275, 795 (1999)Google Scholar
  11. 11.
    X. Wang, Y. Bellouard, J.J. Vlassak, Acta Mater. 53, 4955 (2005)CrossRefGoogle Scholar
  12. 12.
    J.M. Khosrofian, B.A. Garetz, Appl. Opt. 22, 3406 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    Y.S. Touloukian (ed.), Thermophysical Properties of Matter (IFI/Plenum, New York, 1970) (Thermal conductivity data of fused-quartz substrate is from vol. 2, Thermal Conductivity: Nonmetallic Solids, p. 193; specific heat data of fused-quartz substrate is from vol. 5, Specific Heat: Nonmetallic Solids, p. 205, curve #5)Google Scholar
  14. 14.
    http://www.sma-inc.com/html/selected_properties.htmlGoogle Scholar
  15. 15.
    J.W. Christian, The Theory of Transformations in Metals and Alloys, 2nd edn. (Pergamon, New York, 1975)Google Scholar
  16. 16.
    X. Wang, J.J. Vlassak, Scr. Mater. 54, 925 (2006)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Xi Wang
    • 1
  • Yves Bellouard
    • 2
  • Zhenyu Xue
    • 3
  • Joost J. Vlassak
    • 1
    Email author
  1. 1.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Mechanical Engineering DepartmentEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Department of Engineering MechanicsTsinghua UniversityBeijingP.R. China

Personalised recommendations