Applied Physics A

, Volume 90, Issue 2, pp 219–223

Selective processing of semiconductor nanowires by polarized visible radiation



Semiconductor nanowires have attracted intense interest due to potential applications in electronics, sensors and photonics. Introduction of dopants and their subsequent activation are essential for exploiting the electronic properties of semiconductor materials. In this work, we demonstrate pulsed laser annealing of silicon nanowires by visible radiation to be an efficient way for activating incorporated dopants and repairing implantation damage in a process that is compatible with sensitive flexible substrates. In situ electrical monitoring was used to study the laser annealing process. The absorption of laser light in SiNWs was shown to be strongly dependent on the light polarization and nanowire diameter based on finite difference time domain simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002)CrossRefADSGoogle Scholar
  2. 2.
    M.A. Alam, N. Pimparkar, S. Kumar, J. Murthy, MRS Bull. 31, 466 (2006)Google Scholar
  3. 3.
    M.C. McAlpine, R.S. Friedman, S. Jin, K.H. Lin, W.U. Wang, C.M. Lieber, Nano Lett. 3, 1531 (2003)CrossRefGoogle Scholar
  4. 4.
    X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature 425, 274 (2003)CrossRefADSGoogle Scholar
  5. 5.
    J. Niu, J. Sha, Y. Wang, X. Ma, D. Yang, Microelectronic Eng. 66, 65 (2003)Google Scholar
  6. 6.
    S.-W. Chung, J.-Y. Yu, J.R. Heath, Appl. Phys. Lett. 76, 2068 (2000)CrossRefADSGoogle Scholar
  7. 7.
    N. Misra, L. Xu, Y. Pan, N. Cheung, C.P. Grigoropoulos, Appl. Phys. Lett. 90, 111111 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978)Google Scholar
  9. 9.
    G.-H. Ding, C.T. Chan, Z.Q. Zhang, P. Sheng, Phys. Rev. B 71, 205302 (2005)CrossRefADSGoogle Scholar
  10. 10.
    N. Wang, B.D. Yao, Y.F. Chan, X.Y. Zhang, Nano Lett. 3, 475 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Baek, T. Jang, H. Hwang, Appl. Phys. Lett. 80, 2272 (2002)CrossRefADSGoogle Scholar
  12. 12.
    K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, C.H. Tung, L.J. Tang, Y.F. Chong, Appl. Phys. Lett. 89, 122113 (2006)CrossRefADSGoogle Scholar
  13. 13.
    A. Mokhberi, P.B. Griffin, J.D. Plummer, E. Paton, S. McCoy, K. Elliott, IEEE Trans. Electron. Dev. ED-49, 1183 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Earles, M. Law, R. Brindos, K. Jones, S. Talwar, S. Corcoran, IEEE Trans. Electron. Dev. ED-49, 1118 (2002)CrossRefGoogle Scholar
  15. 15.
    N.G. Nilsson, K.G. Svantesson, J. Phys. D Appl. Phys. 13, 39 (1980)CrossRefADSGoogle Scholar
  16. 16.
    A. Javey, S. Nam, R.S. Friendman, H. Yan, C.M. Lieber, Nano Lett. 7, 773 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Nature 430, 61 (2004)CrossRefADSGoogle Scholar
  18. 18.
    D. Yu, J. Wu, Q. Gu, H. Park, J. Am. Chem. Soc. 128, 8148 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • N. Misra
    • 1
  • Y. Pan
    • 2
  • N.W. Cheung
    • 3
  • C.P. Grigoropoulos
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Nanosys, Inc.Palo AltoUSA
  3. 3.Department of Electrical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations