Pre-columbian nanotechnology: reconciling the mysteries of the maya blue pigment
- First Online:
- Received:
- Accepted:
- 34 Citations
- 495 Downloads
Abstract
The ancient Maya combined skills in organic chemistry and mineralogy to create an important technology – the first permanent organic pigment. The unique color and stability of Maya Blue can be explained by a new model where indigo dye fills the grooves present at the surface of palygorskite clay, forming a hydrogen bonded organic/inorganic complex. Existing theory assumes the dye is dispersed inside the channels of an opaque mineral. Based on data from thermal analysis, synchrotron and neutron diffraction, ESEM and chemical modelling calculations, our new concept of Maya Blue structure resolves this contradiction and suggests some novel possibilities for more durable, environmentally benign pigments.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M.E. Haude, J. Am. Inst. Conserv. 37, 240 (1998)CrossRefGoogle Scholar
- 2.C. Reyes-Valerio, De Bonampak al Templo Mayor. El azul maya en Mesoamerica, Coleccion America Nuestra, vol. 40 (Siglo XXI Editores, Mexico D.F., 1993)Google Scholar
- 3.R. Gettens, G.L. Stout, Painting Materials – A Short Encyclopedia (Van Nostrand, New York, 1942)Google Scholar
- 4.R. Gettens, Am. Antiquity 27, 557 (1962)CrossRefGoogle Scholar
- 5.R. Kleber, L. Masschelein-Kleiner, J. Thissen, Stud. Conserv. 12, 41 (1967)CrossRefGoogle Scholar
- 6.H. Van Olphen, Science 154, 645 (1966)CrossRefADSGoogle Scholar
- 7.R. Giustetto, F.X. Llabres i Xamena, G. Ricchiardi, S. Bordiga, A. Damin, R. Gobetto, M.R. Chierotti, J. Phys. Chem. B 109, 19360 (2005)CrossRefGoogle Scholar
- 8.M. Leona, F. Casadio, M. Bacci, M. Picollo, J. Am. Inst. Conserv. 43, 39 (2004)CrossRefGoogle Scholar
- 9.R. Kleber, L. Masschelein-Kleiner, J. Thissen, Stud. Conserv. 12, 41 (1967)CrossRefGoogle Scholar
- 10.L. Palacios-Lazcano, C. Reyes-Valerio, In: De Bonampak al templo Mayor – El azul maya in Mesoamerica, ed. by R.V. Constantino (Siglo XXI Editores, Mexico, 1993), vol. Apéndice, pp. 143–154Google Scholar
- 11.G. Chiari, R. Giustetto, G. Ricchiardi, Eur. J. Mineral. 15, 21 (2003)CrossRefGoogle Scholar
- 12.E. Fois, A. Gamba, A. Tilocca, Micropor. Mesopor. Mater. 57, 263 (2003)CrossRefGoogle Scholar
- 13.L.A. Polette, G. Meitzner, M.J. Yacaman, R.R. Chianelli, Microchem. J. 71, 167 (2002)CrossRefGoogle Scholar
- 14.M. Jose-Yacaman, L. Rendon, J. Arenas, M. Carmen Serra Puche, Science 273, 223 (1996)CrossRefADSGoogle Scholar
- 15.R. Giustetto, D. Levy, G. Chiari, Eur. J. Mineral. 18, 629 (2006)CrossRefGoogle Scholar
- 16.G. Voss, W. Schramm, Helv. Chim. Acta 83, 2884 (2000)CrossRefGoogle Scholar
- 17.R. Giustetto, G. Chiari, Eur. J. Mineral. 16, 521 (2004)CrossRefGoogle Scholar
- 18.B. Hubbard, W. Kuang, A. Moser, G.A. Facey, C. Detellier, Clays Clay Minerals 51, 318 (2003)CrossRefGoogle Scholar
- 19.E.R. Littmann, Am. Antiquity 45, 87 (1980)CrossRefGoogle Scholar
- 20.R.C. Mackenzie (ed.), Differential Thermal Analysis (Academic Press, London, 1972), vol. 1Google Scholar
- 21.F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids (Academic, New York, USA, 1999), pp. 360–361Google Scholar