Applied Physics A

, Volume 90, Issue 2, pp 317–321 | Cite as

Luminescence mechanism of ZnO thin film investigated by XPS measurement



The effects of annealing environment on the luminescence characteristics of ZnO thin films that were deposited on SiO2/Si substrates by reactive RF magnetron sputtering were investigated by X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). An analysis of the O 1s peak of ZnO film revealed that the concentration of oxygen vacancies increased with the annealing temperature from 600 °C to 900 °C under an ambient atmosphere. The PL results demonstrated that the intensity of green light emission at 523 nm also increased with temperature. Under various annealing atmospheres, the analyses of PL indicated that only one emission peak (523 nm) was obtained, indicating that only one class of defect was responsible for the green luminescence. The green light emission was strongest and the concentration of oxygen vacancies was highest when the ZnO film was annealed in ambient atmosphere at 900 °C. The results in this investigation show that the luminescence mechanism of the emission of green light from a ZnO thin film is associated primarily with oxygen vacancies.


Oxygen Vacancy Green Emission Ambient Atmosphere Luminescence Mechanism Green Light Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Q.P. Wang, D.H. Zhang, Z.Y. Xue, X.J. Zhang, Opt. Mater. 26, 23 (2004)CrossRefADSGoogle Scholar
  2. 2.
    Y. Liu, C.R. Gorla, S. Liang, J. Electron. Mater. 29, 60 (2000)Google Scholar
  3. 3.
    S. Takata, T. Minami, H. Nanto, Japan. J. Appl. Phys. 20, 1759 (1981)CrossRefADSGoogle Scholar
  4. 4.
    S. Bethke, H. Pan, B.W. Wessels, Appl. Phys. Lett. 52, 138 (1998)CrossRefADSGoogle Scholar
  5. 5.
    T. Minami, H. Nanto, S. Takata, Thin Solid Films 109, 379 (1983)CrossRefGoogle Scholar
  6. 6.
    B.J. Pierce, R.L. Hengehold, J. Appl. Phys. 47, 644 (1976)CrossRefADSGoogle Scholar
  7. 7.
    P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103, 459 (1997)CrossRefGoogle Scholar
  8. 8.
    S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999)CrossRefADSGoogle Scholar
  9. 9.
    V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998)CrossRefADSGoogle Scholar
  10. 10.
    P.H. Kasai, Phys. Rev. 130, 989 (1963)CrossRefADSGoogle Scholar
  11. 11.
    F.A. Kröger, H.J. Vink, J. Chem. Phys. 22, 250 (1954)CrossRefADSGoogle Scholar
  12. 12.
    M. Liu, A.H. Kitai, P. Mascher, J. Luminesc. 54, 35 (1992)CrossRefGoogle Scholar
  13. 13.
    E.G. Bylander, J. Appl. Phys. 49, 1188 (1978)CrossRefADSGoogle Scholar
  14. 14.
    B. Lin, Z. Fu, Y. Jia, G. Liao, J. Electrochem. Soc. 148, G110 (2001)CrossRefGoogle Scholar
  15. 15.
    M.K. Puchert, P.Y. Timbrell, R.N. Lamb, J. Vac. Sci. Technol. A 14, 2220 (1996)CrossRefADSGoogle Scholar
  16. 16.
    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)CrossRefGoogle Scholar
  17. 17.
    C.Y. Leung, A.B. Djurisic, Y.H. Leung, L. Ding, C.L. Yang, W.K. Ge, J. Cryst. Growth 290, 131 (2006)CrossRefGoogle Scholar
  18. 18.
    X. Wang, T. Yang, G. Du, H. Liang, Y. Chang, W. Liu, Y. Xu, J. Cryst. Growth 285, 521 (2005)CrossRefGoogle Scholar
  19. 19.
    Y.X. Liu, Y.C. Liu, D.Z. Shen, G.Z. Zhong, X.W. Fan, X.G. Kong, R. Mu, D.O. Henderson, Solid State Commun. 121, 531 (2002)CrossRefGoogle Scholar
  20. 20.
    P.T. Hsieh, Y.C. Chen, C.M. Wang, Y.Z. Tsai, C.C. Hu, Appl. Phys. A 84, 345 (2006)CrossRefADSGoogle Scholar
  21. 21.
    J.F. Moulder, W.F. Stickel, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Eden Prairie, MN, Physical Electronics, 1995)Google Scholar
  22. 22.
    S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra, Appl. Phys. Lett. 49, 394 (1986)CrossRefADSGoogle Scholar
  23. 23.
    Y. Natsume, H. Sakata, Mater. Chem. Phys. 78, 170 (2003)CrossRefGoogle Scholar
  24. 24.
    M. Futsuhara, K. Yoshioka, O. Takai, Thin Solid Films 322, 274 (1998)CrossRefGoogle Scholar
  25. 25.
    Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, J. Appl. Phys. 72, 4203 (1992)CrossRefADSGoogle Scholar
  26. 26.
    Y. Natsume, H. Sakata, Thin Solid Films 372, 30 (2000)CrossRefGoogle Scholar
  27. 27.
    S. Evans, Surf. Interf. Anal. 7, 299 (1985)CrossRefGoogle Scholar
  28. 28.
    D.W. Langer, C.J. Vesely, Phys. Rev. B 2, 4885 (1970)CrossRefADSGoogle Scholar
  29. 29.
    Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Phys. E 35, 199 (2006)Google Scholar
  30. 30.
    T. Szörényi, L.D. Laude, I. Bertóti, Z. Kántor, Z. Geretovszky, J. Appl. Phys. 78, 6211 (1995)CrossRefADSGoogle Scholar
  31. 31.
    Y. Zhang, B. Lin, Z. Fu, C. Liu, W. Han, Opt. Mater. 28, 1192 (2006)CrossRefADSGoogle Scholar
  32. 32.
    A. Chatterjee, C.H. Shen, A. Ganguly, L.C. Chen, C.W. Hsu, J.Y. Hwang, K.H. Chen, Chem. Phys. Lett. 391, 278 (2004)CrossRefGoogle Scholar
  33. 33.
    S.Y. Kuo, W.C. Chen, C.P. Cheng, Superlattices Microstruct. 39, 162 (2006)CrossRefADSGoogle Scholar
  34. 34.
    J. Zhao, L.H. Hu, Z.Y. Wanf, Y. Zhao, X.P. Liang, M.T. Wang, Appl. Surf. Sci. 229, 311 (2004)CrossRefADSGoogle Scholar
  35. 35.
    S.J. Chen, Y.C. Liu, J.G. Ma, D.X. Zhao, Z.Z. Zhi, Y.M. Lu, J.Y. Zhang, D.Z. Shen, X.W. Fan, J. Cryst. Growth 240, 467 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P.-T. Hsieh
    • 1
  • Y.-C. Chen
    • 1
  • K.-S. Kao
    • 2
  • C.-M. Wang
    • 3
  1. 1.Department of Electrical EngineeringNational Sun Yat-Sen UniversityKaohsiungR.O.C.
  2. 2.Department of Computer and CommunicationShu-Te UniversityKaohsiungR.O.C.
  3. 3.Department of Electrical EngineeringCheng Shiu UniversityKaohsiungR.O.C.

Personalised recommendations