Applied Physics A

, Volume 89, Issue 3, pp 663–666 | Cite as

Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films



We report the observation of crystallization and simultaneous formation of surface microstructures in hydrogenated amorphous silicon (a-Si:H) thin films as one step laser processing. Light trapping microstructures of around 300 nm in height were formed on a-Si:H films of thickness in the range of 1.5 μm to 2 μm deposited on soda lime glass after exposure to femtosecond laser pulses. Scanning electron microscope (SEM) images show the formation of spikes that are around 1 μm part and their heights could be controlled by the laser fluences. Atomic force microscope (AFM) images were taken to study the roughness created on the surface. The mean roughness of the textured surface increases with laser fluence at smaller power densities, and for power densities beyond 0.5 J/cm2 the film removal deteriorates the texturing. X-ray diffraction results indicate the formation of a nano-crystalline structure with (111) and (311) crystal orientation after the laser treatment. The observed black color and enhanced optical absorption in the near infrared region in laser treated films may be due to a combined effect of light trapping in the micro-structured silicon surface because of multiple total internal reflections, phase change in the film, possible defect sites induced after laser treatment and formation of SiOx. Demonstration of light trapping microstructures in thin a-Si:H films and simultaneous crystallization could provide new opportunities for optoelectronic devices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.B. Schubert, Thin Solid Films 337, 240 (1999)CrossRefGoogle Scholar
  2. 2.
    P. Roca i Cabarrocas, A. Fontcuberta i Morral, S. Lebib, Y. Poissant, Pure Appl. Chem. 74, 359 (2002)Google Scholar
  3. 3.
    P. Roca i Cabarrocas, Appl. Phys. Lett. 65, 1674 (1994)CrossRefADSGoogle Scholar
  4. 4.
    R.B. Bergmann, Appl. Phys. A 69, 187 (1999)CrossRefADSGoogle Scholar
  5. 5.
    S. Kanev, Z. Nenova, K. Ivanova, S. Koynov, Sol. Energ. Mater. Sol. Cells 36, 277 (1995)CrossRefGoogle Scholar
  6. 6.
    P.J. Zanzucchi, C.R. Wronski, D.E. Carlson, J. Appl. Phys. 48, 5227 (1977)CrossRefADSGoogle Scholar
  7. 7.
    S.D. Brotherton, J.R. Ayres, M.J. Edwards, C.A. Fisher, C. Glaister, J.P. Gowers, D.J. McCulloch, M. Trainer, Thin Solid Films 337, 188 (1999)CrossRefGoogle Scholar
  8. 8.
    S.D. Brotherton, D.J. McCulloch, J.B. Clegg, J.P. Gowers, IEEE Trans. Electron. Dev. 40, 407 (1993)CrossRefGoogle Scholar
  9. 9.
    P. Mei, J.B. Boyce, M. Hack, R. Lujan, S.E. Ready, D.K. Fork, R.I. Johnson, G.B. Anderson, J. Appl. Phys. 76, 3194 (1994)CrossRefADSGoogle Scholar
  10. 10.
    G. Andra, J. Bergmann, F. Falk, E. Ose, H. Stafast, Phys. Stat. Solidi A 166, 629 (1998)CrossRefADSGoogle Scholar
  11. 11.
    B.K. Nayak, B. Eaton, J.A.A. Selvan, J. McLeskey, M.C. Gupta, R. Romero, G. Ganguly, Appl. Phys. A 80, 1077 (2005)CrossRefADSGoogle Scholar
  12. 12.
    G. Andra, J. Bergmann, F. Falk, E. Ose, Thin Solid Films 318, 42 (1998)CrossRefGoogle Scholar
  13. 13.
    P. Mei, J.B. Boyce, M. Hack, R. Lujan, R.I. Johnson, G.B. Anderson, D.K. Fork, S.E. Ready, Appl. Phys. Lett. 64, 1132 (1994)CrossRefADSGoogle Scholar
  14. 14.
    J.S. Im, H.J. Kim, M.O. Thompson, Appl. Phys. Lett. 63, 1969 (1993)CrossRefADSGoogle Scholar
  15. 15.
    R. Dassow, J.R. Kohler, M. Nerding, H.P. Strunk, Y. Helen, K. Mourgues, O. Bonnaud, T. Mohammed-Brahim, J.H. Werner, Mat. Res. Soc. Symp. Proc. 621, Q9.3.1 (2000)Google Scholar
  16. 16.
    M. Hatano, S. Moon, M. Lee, K. Suzuki, C.P. Grigoropoulos, J. Appl. Phys. 87, 36 (2000)CrossRefADSGoogle Scholar
  17. 17.
    K. Sundaram, E. Mazur, Nature Mater. 1, 217 (2002)CrossRefADSGoogle Scholar
  18. 18.
    A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Nature (London) 410, 65 (2001)CrossRefADSGoogle Scholar
  19. 19.
    K. Sokolowski-Tinten, J. Biakowski, D. von der Linde, Phys. Rev. B 51, 14186 (1995)CrossRefADSGoogle Scholar
  20. 20.
    T.Y. Choi, C.P. Grigoropoulos, J. Appl. Phys. 92, 4918 (2002)CrossRefADSGoogle Scholar
  21. 21.
    X. Liu, D. Du, G. Mourou, IEEE J. Quantum Electron. QE-33, 1706 (1997)CrossRefGoogle Scholar
  22. 22.
    T.Q. Jia, Z.Z. Xu, X.X. Li, R.X. Li, B. Shuai, F.L. Zhao, Appl. Phys. Lett. 82, 4382 (2003)CrossRefADSGoogle Scholar
  23. 23.
    T.-H. Her, R.J. Finlay, C. Wu, E. Mazur, Appl. Phys. A 70, 383 (2000)CrossRefADSGoogle Scholar
  24. 24.
    K. Pangal, J.C. Sturm, S. Wagner, T.H. Buyuklimanli, J. Appl. Phys. 85, 1900 (1999)CrossRefADSGoogle Scholar
  25. 25.
    C.V. Thompson, Henry I. Smith, Appl. Phys. Lett. 44, 603 (1984)CrossRefADSGoogle Scholar
  26. 26.
    H. Natter, M. Schmelzer, M.-S. Lo1ffler, C.E. Krill, A. Fitch, R. Hempelmann, J. Phys. Chem. B 104, 2467 (2000)CrossRefGoogle Scholar
  27. 27.
    T.Y. Choi, D.J. Hwang, C.P. Grigoropoulos, Opt. Eng. 42, 3383 (2003)CrossRefADSGoogle Scholar
  28. 28.
    A. Sarker, C. Banerjee, A.K. Barua, J. Phys. D Appl. Phys. 35, 1205 (2002)CrossRefADSGoogle Scholar
  29. 29.
    M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Blasing, Appl. Phys. Lett. 80, 661 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Charles L. Brown Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations