Advertisement

Applied Physics A

, Volume 90, Issue 1, pp 185–189 | Cite as

Polarization fatigue resistance of Ca-doped Pb(Zr0.52Ti0.48)O3 thin films prepared by the sol–gel method

  • T. Wei
  • Y. Wang
  • C. Zhu
  • X.W. Dong
  • Y.D. Xia
  • J.S. Zhu
  • J.-M. LiuEmail author
Article

Abstract

The ferroelectric and polarization fatigue characteristics of Pb1-xCax(Zr0.52Ti0.48)O3 (PCZT) thin films prepared using the sol–gel method were studied. The Ca-doping slightly suppresses the ferroelectricity of Pb(Zr0.52Ti0.48)O3 (PZT) because of the quantum paraelectric behavior of CaTiO3. Compared with PZT thin films, the PCZT (x=0.2) thin films show enhanced fatigue resistance at room temperature, further emphasized by the almost fatigue-free behavior at 100 K. The temperature-dependent dc-conductivity suggests a decrease of the oxygen vacancy density by almost 20 times and a slightly declined activation energy U for oxygen vacancies, upon increasing of the Ca-doping content from 0.0 to 0.2. It is argued that the improved fatigue endurance is ascribed to the decreasing density of oxygen vacancies due to the Ca-doping, although the lowered activation energy of oxygen vacancies is unfavorable.

Keywords

Fatigue Oxygen Vacancy Oxide Electrode Ferroelectric Phase Transition Charged Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Scott, C.A. Paz de Arajuo, Science 246, 1400 (1989)CrossRefADSGoogle Scholar
  2. 2.
    P. Muralt, M. Kohli, T. Maeder, A. Kholkin, K. Brooks, N. Setter, R. Luthier, Sens. Actuators A 48, 157 (1995)CrossRefGoogle Scholar
  3. 3.
    H.D. Chen, K.R. Udayakumar, C.J. Gaskey, L.E. Cross, Appl. Phys. Lett. 67, 3411 (1995)CrossRefADSGoogle Scholar
  4. 4.
    M. Keijser, G.J.M. Dormans, MRS Bull. 21, 37 (1996)Google Scholar
  5. 5.
    H. Watanabe, T. Mihara, Japan. J. Appl. Phys. 34, 5240 (1995)CrossRefADSGoogle Scholar
  6. 6.
    H.N. Al-Shareef, O. Auciello, A.I. Kingon, J. Appl. Phys. 77, 2146 (1995)CrossRefADSGoogle Scholar
  7. 7.
    M.-S. Chen, T.-B. Wu, J.-M. Wu, Appl. Phys. Lett. 68, 1430 (1996)CrossRefADSGoogle Scholar
  8. 8.
    R. Ramesh, W.K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J.M. Tarascon, D.K. Fork, J. Lee, A. Safari, Appl. Phys. Lett. 61, 1537 (1992)CrossRefADSGoogle Scholar
  9. 9.
    R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen, D.K. Fork, Appl. Phys. Lett. 63, 3592 (1993)CrossRefADSGoogle Scholar
  10. 10.
    I. Stolichnov, A. Tagantsev, N. Setter, J.S. Cross, M. Tsukada, Appl. Phys. Lett. 74, 3552 (1999)CrossRefADSGoogle Scholar
  11. 11.
    T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Appl. Phys. Lett. 65, 1522 (1994)CrossRefADSGoogle Scholar
  12. 12.
    W.B. Wu, K.H. Wong, C.L. Choy, Y.H. Zhang, Appl. Phys. Lett. 77, 3441 (2000)CrossRefADSGoogle Scholar
  13. 13.
    U. Roebels, J.H. Calderwood, G. Arlt, J. Appl. Phys. 77, 4002 (1995)CrossRefADSGoogle Scholar
  14. 14.
    I.K. Yoo, S.B. Desu, Phys. Stat. Solidi A 133, 565 (1992)CrossRefGoogle Scholar
  15. 15.
    E. Paton, M. Brazier, S. Mansour, A. Bement, Integr. Ferroelectr. 18, 29 (1997)CrossRefGoogle Scholar
  16. 16.
    J.K. Lee, C.H. Kim, H.S. Suh, K.S. Hong, Appl. Phys. Lett. 80, 3593 (2002)CrossRefADSGoogle Scholar
  17. 17.
    J.J. Lee, C.L. Thio, S.B. Desu, J. Appl. Phys. 78, 5073 (1995)CrossRefADSGoogle Scholar
  18. 18.
    J.L. Sun, J. Chen, X.J. Meng, J. Yu, L.X. Bo, S.L. Guo, J.H. Chu, Appl. Phys. Lett. 80, 3584 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Y. Wang, Q.Y. Shao, J.-M. Liu, Appl. Phys. Lett. 88, 122902 (2006)CrossRefADSGoogle Scholar
  20. 20.
    B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971)Google Scholar
  21. 21.
    J.-M. Liu, Y. Wang, C. Zhu, G.L. Yuan, S.T. Zhang, Appl. Phys. Lett. 87, 042904 (2005)CrossRefGoogle Scholar
  22. 22.
    V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht, R. Kunze, Solid State Commun. 110, 611 (1999)CrossRefGoogle Scholar
  23. 23.
    A. Chandra, R. Ranjan, D.P. Singh, N. Khare, D. Pandey, J. Phys.: Condens. Matter 18, 2977 (2006)CrossRefADSGoogle Scholar
  24. 24.
    B.E. Vugmeister, M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990)CrossRefADSGoogle Scholar
  25. 25.
    E.L. Colla, D.V. Taylor, A.K. Tagantsev, N. Setter, Appl. Phys. Lett. 72, 2478 (1998)CrossRefADSGoogle Scholar
  26. 26.
    L.F. Schloss, P.C. McIntyre, B.C. Hendrix, S.M. Bilodeau, J.F. Roeder, S.R. Gilbert, Appl. Phys. Lett. 81, 3218 (2002)CrossRefADSGoogle Scholar
  27. 27.
    M. Dawber, J.F. Scott, Appl. Phys. Lett. 76, 1060 (2000); M. Dawber, J.F. Scott, Appl. Phys. Lett. 76, 3655 (2000)CrossRefADSGoogle Scholar
  28. 28.
    L.E. Cross, Ferroelectrics 76, 241 (1987)Google Scholar
  29. 29.
    S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • T. Wei
    • 1
    • 2
  • Y. Wang
    • 1
    • 2
  • C. Zhu
    • 1
    • 2
  • X.W. Dong
    • 1
    • 2
  • Y.D. Xia
    • 1
    • 2
  • J.S. Zhu
    • 1
    • 2
  • J.-M. Liu
    • 1
    • 2
    Email author
  1. 1.Laboratory of Solid State MicrostructureNanjing UniversityNanjingP.R. China
  2. 2.International Center for Materials PhysicsChinese Academy of SciencesShenyangP.R. China

Personalised recommendations