Applied Physics A

, Volume 89, Issue 4, pp 941–944 | Cite as

Experimental and numerical study on AlGaInAs/AlGaAs distributed feedback lasers with GaInP gratings

  • Fu Shenghui
  • Song Guofeng
  • Chen Lianghui


Ridge-waveguide AlGaInAs/AlGaAs distributed feedback lasers with lattice-matched GaInP gratings were fabricated and their light-current characteristics, spectrum and far-field characteristics were measured. On the basis of our experimental results we analyze the effect of the electron stopper layer on light-current performance using the commercial laser simulation software PICS3D. The simulator is based on the self-consistent solution of drift diffusion equations, the Schrödinger equation, and the photon rate equation. The simulation results suggest that, with the use of a 80 nm-width p-doped Al0.6GaAs electron stopper layer, the slope efficiency can be increased and the threshold current can be reduced by more than 10 mA.


Threshold Current Ridge Waveguide Electron Leakage Distribute Feedback Laser Side Mode Suppression Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Moshe, B. Yuri, K. Yoram, Proc. SPIE 6104, 2006Google Scholar
  2. 2.
    C.A. Wang, J.N. Walpole , L.J. Missaggia, J.P. Donnelly, H.K. Choi, IEEE Photon. Technol. Lett. 3, 4 (1991)CrossRefADSGoogle Scholar
  3. 3.
    L. Buydens, P. Demeester, M. Vanackere, P. Vandaele, Electron. Lett. 27, 618 (1991)CrossRefGoogle Scholar
  4. 4.
    S.O. Sean, J.S. William , F.E. Lester, IEEE Photon. Technol. Lett. 5, 738 (1993)CrossRefGoogle Scholar
  5. 5.
    S. Bhargava, C. Zheng, J. Ko, M.A. Chin, L.A. Coldren, V. Narayanamurti, Appl. Phys. Lett. 73, 3271 (1998)CrossRefADSGoogle Scholar
  6. 6.
    O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, C. Amano, IEEE Photon. Technol. Lett. 12, 942 (2000)CrossRefGoogle Scholar
  7. 7.
    L.J. Mawst, S. Rusli, A. Al-Muhannawade, J.K. Wade, IEEE J. Sel. Top. Quantum Electron. 5, 785 (1999)CrossRefGoogle Scholar
  8. 8.
    J.R. Shealy, Appl. Phys. Lett. 50, 1634 (1987)CrossRefADSGoogle Scholar
  9. 9.
    S.R. Chinn, P.S. Zory, A.R. Reisinger, IEEE J. Quantum Electron. QE-24, 2191 (1988)CrossRefADSGoogle Scholar
  10. 10.
    H. Jaeckel, G.-L. Bona, P. Buchmann, H.P. Meier, P. Vettiger, IEEE J. Quantum Electron. QE-21, 1560 (1991)CrossRefADSGoogle Scholar
  11. 11.
    S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, T. Nakayama, Electron. Lett. 22, 310 (1986)CrossRefGoogle Scholar
  12. 12.
    PICS3D trail version Crosslight Inc. Software Canada Available online at http://www.crosslight.caGoogle Scholar
  13. 13.
    J.R. Jensen, J.M. Hvam, W. Langbein, J. Appl. Phys. 86, 2584 (1999)CrossRefADSGoogle Scholar
  14. 14.
    D. Ahn, S.L. Chuang, Y.C. Chang, J. Appl. Phys. 64, 4056 (1988)CrossRefADSGoogle Scholar
  15. 15.
    D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. QE-26, 13 (1990)CrossRefADSGoogle Scholar
  16. 16.
    P. Abraham, J. Piprek, S.P. Denbaars, J.E. Bowers, Semicond. Sci. Technol. 14, 419 (1999)CrossRefADSGoogle Scholar
  17. 17.
    S. Mogg, J. Piprek, Proc. SPIE 4283, 227 (2001)CrossRefADSGoogle Scholar
  18. 18.
    S.-W. Hsieh, Y.-K. Kuo, Appl. Phys. A 82, 287 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Y.-K. Kuo, S.-W. Hsieh, H.-F. Chen, Japan. J. Appl. Phys. 45, 1588 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of SemiconductorChinese Academy of SciencesBeijingP.R. China

Personalised recommendations