Applied Physics A

, Volume 90, Issue 1, pp 23–33 | Cite as

Weathering of gilding decorations investigated by SR: development and distribution of calcium oxalates in the case of Sant Benet de Bages (Barcelona, Spain)

  • A. LluverasEmail author
  • S. Boularand
  • J. Roqué
  • M. Cotte
  • P. Giráldez
  • M. Vendrell-Saz


In this paper seventeenth century gilded paintings from the crypt of Sant Benet de Bages, a medieval monastery in the Catalonia region of Spain, near Barcelona, have been studied. Cross sections from two different gilded decorations were studied by means of optical microscopy and electron microscopy and EDS to determine the statigraphy and elemental composition, and by means of FTIR coupled to a microscope to determine the binding media associated to each layer. These preliminary results demonstrated that gilded decorations were made by the application of a gold foil on a mordant substrate on a gypsum base, while the mouldings of the vaults seem to be gilded on a bol with a glaze on top of the gold leaf. It is interesting to notice that the first remained unaltered, while the gilded vault mouldings look almost black, due to the darkening of the organic material. To elucidate the causes involved in the darkening of the sample from the vaults a set of synchrotron μXRD and μFTIR experiments have been carried out on these samples at the ESRF (ID18F and ID21, respectively). High brightness and small spot working conditions revealed the development and distribution of calcium oxalates in the binding media, which seem to be responsible for the darkening. Results point out the fact that weddellite (CaC2O4·2H2O) is the phase formed in those layers where organic material has also been identified or at least it would be supposed to be by bibliographic sources and not necessarily those superficial as it would have been suggested due to the similarities with patinas formation.


Gypsum Calcium Oxalate Bages Methyl Ethyl Ketone Peroxide Calcium Oxalate Dihydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Alvarez de Buergo, R. Fort González, Constr. Build. Mater. 17, 83 (2003)CrossRefGoogle Scholar
  2. 2.
    P. Yu, Brit. J. Nutr. 92, 869 (2004)CrossRefGoogle Scholar
  3. 3.
    C. Genestar, Mater. Lett. 54, 382 (2002)CrossRefGoogle Scholar
  4. 4.
    R.J. Meilunas, J.G. Bentsen, A. Steinberg, Stud. Conserv. 35, 33 (1990)CrossRefGoogle Scholar
  5. 5.
    G.C. Jones, B. Jackson, Infrared Transmission Spectra of Carbonate Minerals (Chapman and Hall, London, 1993)Google Scholar
  6. 6.
    D. Biakiaris, S. Danilia, S. Sotiropoulou, O. Katsimbiri, E. Pavlidou, A.P. Moutsatsou, Y. Chryssoulakis, Spectrochim. Acta A 56, 3 (1999)Google Scholar
  7. 7.
    K. Helwig, IRUG at the V&A, p. 83Google Scholar
  8. 8.
    P.V. Monje, E.J. Baran, J. Plant. Physiol. 128, 707 (2002)CrossRefGoogle Scholar
  9. 9.
    M.R. Derrick, D. Stulik, J.M. Landry, Infrared Spectroscopy in Conservation Science (The Getty Conservation Institute, Los Angeles, 1999)Google Scholar
  10. 10.
    J. van der Weerd, R.M.A. Heeren, J.J. Boon, Stud. Conserv. 49, 193 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Derrick, L. Souza, T. Kieslich, H. Florsheim, D. Stulik, J. Am. Inst. Conserv. 33, 227 (1994)CrossRefGoogle Scholar
  12. 12.
    P. Dumas, L. Miller, Vib. Spectrosc. 32, 3 (2003)CrossRefGoogle Scholar
  13. 13.
    P. Dumas, N. Jasmin, J.L. Teillaud, L.M. Miller, B. Beccard, Faraday Discuss. 126, 289 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Cotte, P. Walter, G. Tsoucaris, P. Dumas, Vib. Spectrosc. 38, 159 (2005)CrossRefGoogle Scholar
  15. 15.
    I. Bonaduce, A Multi-Analytical Approach for the Investigation of Materials and Techniques in the Art of Gilding (Università di Pisa, 2005)Google Scholar
  16. 16.
    N. Salvadó, T. Pradell, E. Pantos, M.Z. Papiz, J. Molera, M. Seco, M. Vendrell-Saz, J. Synchrotron. Radiat. 9, 215 (2002)CrossRefGoogle Scholar
  17. 17.
    A.P. Hammersley, O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermann, High Press. Res. 14, 235 (1996)CrossRefADSGoogle Scholar
  18. 18.
    M. Clarke, J.J. Boon, Molecular Aspects of Ageing in Painted Works of Art (FOM Institute AMOLF, Amsterdam, 2003)Google Scholar
  19. 19.
    M. Matteini, A. Moles, La química en la restauración, Los materiales del arte pictórico (NEREA Junta de Andalucía – Consejería de Cultura – IAPH 1989)Google Scholar
  20. 20.
    R. Mayer, Materiales y técnicas del arte 9a edición (Tursen, Hermann Blume Ediciones, Madrid, 1993)Google Scholar
  21. 21.
    A. Villarquide Jenevois, La pintura sobre tela I, Historiografía, técnicas y materiales (NEREA 2004)Google Scholar
  22. 22.
    M. Doerner, Los materiales de pintura y su empleo en el arte 18a edición (Editorial Reverté, Barcelona, 1998)Google Scholar
  23. 23.
    M. Garcia-Vallès, M. Vendrell-Saz, J. Molera, F. Blázquez, Environ. Geol. 36, 137 (1998)CrossRefGoogle Scholar
  24. 24.
    F. Cariati, L. Rampazzi, L. Toniolo, A. Pozzi, Stud. Conserv. 45, 180 (2000)CrossRefGoogle Scholar
  25. 25.
    P. Maravelaki-Kalaitzaki, Anal. Chim. Acta 532, 187 (2005)CrossRefGoogle Scholar
  26. 26.
    M.T. Doménech Carbó, J. Mol. Struct. 410-/411, 559 (1997)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Lluveras
    • 1
    Email author
  • S. Boularand
    • 1
  • J. Roqué
    • 1
  • M. Cotte
    • 2
  • P. Giráldez
    • 1
  • M. Vendrell-Saz
    • 1
  1. 1.Departament de Cristallografia i MineralogiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.European Synchrotron Radiation FacilityPolygone Scientifique Louis NéelGrenobleFrance

Personalised recommendations