Applied Physics A

, Volume 89, Issue 4, pp 825–832 | Cite as

Classification of lead white pigments using synchrotron radiation micro X-ray diffraction

  • E. Welcomme
  • P. Walter
  • P. Bleuet
  • J.-L. Hodeau
  • E. Dooryhee
  • P. Martinetto
  • M. Menu


Lead white pigment was used and synthesised for cosmetic and artistic purposes since the antiquity. Ancient texts describe the various recipes, and preparation processes as well as locations of production. In this study, we describe the results achieved on several paint samples taken from Matthias Grünewald’s works. Grünewald, who was active between 1503 and 1524, was a major painter at the beginning of the German Renaissance. Thanks to X-ray diffraction analysis using synchrotron radiation, it is possible to associate the composition of the paint samples with the masters ancient recipes. Different approaches were used, in reflection and transmission modes, directly on minute samples or on paint cross-sections embedded in resin. Characterisation of lead white pigments reveals variations in terms of composition, graininess and proportion of mineral phases. The present work enlightens the presence of lead white as differentiable main composition groups, which could be specific of a period, a know-how or a geographical origin. In this way, we aim at understanding the choices and the trading of pigments used to realise paintings during northern European Renaissance.


Transmission Mode Stibnite Paint Sample European Synchrotron Radiation Facility Diffraction Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Welcomme, P. Walter, E. van Elslande, G. Tsoucaris, Appl. Phys. A 83, 551 (2006)CrossRefADSGoogle Scholar
  2. 2.
    H. Le Bonniec, Pline l’Ancien, Histoire naturelle, XXXIV (Les Belles Lettres, Paris, 1983)Google Scholar
  3. 3.
    J.M. Croisille, Pline l’Ancien, Histoire naturelle, XXXV (Les Belles Lettres, Paris, 1985)Google Scholar
  4. 4.
    R. Billinge, L. Campbell, J. Dunkerton, S. Foister, J. Kirby, J. Pilc, A. Roy, M. Spring, R. White, Nat. Gallery Tech. Bull. 18, 6 (1997)Google Scholar
  5. 5.
    M. Cotte, E. Checroun, J. Susini, P. Walter, Appl. Phys. A (this volume) (2007)Google Scholar
  6. 6.
    R. Riepertinger (Ed.), Das Rätsel Grünewald, Catalog of “Bayerische Landesausstellung, Aschaffenburg 2002/2003”, Augsburg (2002)Google Scholar
  7. 7.
    A.N. Fitch, J. Res. Nat. Inst. Stand. Technol. 109, 133 (2004)Google Scholar
  8. 8.
    J. Rodriguez-Carjaval, Abst. Satellite Meeting on Powder diffraction of the XVth IUCR Congress (1990), p. 127Google Scholar
  9. 9.
    H.M. Rietveld, J. Appl. Phys. 2, 65 (1969)Google Scholar
  10. 10.
    J.I. Langford, D. Louër, Rep. Prog. Phys. 59, 131 (1996)CrossRefADSGoogle Scholar
  11. 11.
    A. Somogyi, R. Tucoulou, G. Martinez-Criado, A. Homs, J. Cauzid, P. Bleuet, S. Bohic, A. Simionovici, J. Synchrotron. Radiat. 12, 208 (2005)CrossRefGoogle Scholar
  12. 12.
    A. Somogyi, M. Drakopoulos, L. Vincze, B. Vekemans, C. Camerani, K. Janssens, A. Snigirev, F. Adams, X-ray Spectrom. 30, 242 (2001)CrossRefGoogle Scholar
  13. 13.
    A.P. Hammersley, Synch. Radiat. News 2, 24 (1989)Google Scholar
  14. 14.
    N. Salvado, T. Pradell, E. Pantos, M.Z. Papiz, J. Molera, M. Seco, M. Vendrell-Saz, J. Synchrotron. Radiat. 9, 215 (2002)CrossRefGoogle Scholar
  15. 15.
    J.C. Labiche, J. Segura-Puchades, D. Van Brussel, J.P. Moy, ESRF Newslett. 25, 41 (1996)Google Scholar
  16. 16.
    M. Menu, J.-J. Ezrati, E. Laval, S. Pagès, A. Principaud, J.-P. Rioux, P. Walter, E. Welcomme, W. Nowik, La technique de Grünewald et de ses contemporains, éd C2RMF, Musée de Colmar, Eu-Artech (2007)Google Scholar
  17. 17.
    P. Martinetto, M. Anne, E. Dooryhée, P. Walter, G. Tsoucaris, Acta Cryst. C 58, i82 (2002)Google Scholar
  18. 18.
    J.F. Bérar, P. Lélann, J. Appl. Cryst. 24, 1 (1991)CrossRefGoogle Scholar
  19. 19.
    M. Ferretti, G. Guidi, P. Moioli, R. Scafe, C. Seccaroni, Stud. Conserv. 36, 235 (1991)CrossRefGoogle Scholar
  20. 20.
    M. Spring, R. Grout, R. White, Nat. Gallery Tech. Bull. 24, 96 (2003)Google Scholar
  21. 21.
    G. Gros, N. Pascal, S. Pelletier, ARTEMIS-Software for generating elemental maps using X-ray fluorescence spectra, European Synchrotron Radiation Facility (2001)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • E. Welcomme
    • 1
  • P. Walter
    • 1
  • P. Bleuet
    • 2
  • J.-L. Hodeau
    • 3
  • E. Dooryhee
    • 3
  • P. Martinetto
    • 3
  • M. Menu
    • 1
  1. 1.Centre de Recherche et de Restauration des Musées de France – CNRS UMR 171ParisFrance
  2. 2.European Synchrotron Radiation FacilityGrenoble CedexFrance
  3. 3.Institut Néel CNRS-UPR 503-1Grenoble Cedex 9France

Personalised recommendations