Advertisement

Applied Physics A

, Volume 89, Issue 4, pp 1017–1024 | Cite as

Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum

  • S. AmorusoEmail author
  • R. Bruzzese
  • C. Pagano
  • X. Wang
Article

Abstract

We present an experimental characterization describing the characteristics features of the plasma plume dynamics and material removal efficiency during ultrashort, visible (527 nm, ≈300 fs) laser ablation of nickel in high vacuum. The spatio-temporal structure and expansion dynamics of the laser ablation plasma plume are investigated by using both time-gated fast imaging and optical emission spectroscopy. The spatio-temporal evolution of the ablation plume exhibits a layered structure which changes with the laser pulse fluence F. At low laser fluences (F<0.5 J/cm2) the plume consists of two main populations: fast Ni atoms and slower Ni nanoparticles, with average velocities of ≈104 m/s for the atomic state and ≈102 m/s for the condensed state. At larger fluences (F>0.5 J/cm2), a third component of much faster atoms is observed to precede the main atomic plume component. These atoms can be ascribed to the recombination of faster ions with electrons in the early stages of the plume evolution. A particularly interesting feature of our analysis is that the study of the ablation efficiency as a function of the laser fluence indicates the existence of an optimal fluence range (a maximum) for nanoparticles generation, and an increase of atomization at larger fluences.

Keywords

Laser Ablation Target Surface Plasma Plume Ablation Plume Plume Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.R. Phypps (Ed.), Laser Ablation and its Applications (Springer, Berlin, 2006)Google Scholar
  2. 2.
    S.I. Anisimov, B.S. Luk’yanchuk, Phys. Uspekhi 45, 293 (2002)CrossRefADSGoogle Scholar
  3. 3.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    F. Korte, J. Koch, B.N. Chichkov, Appl. Phys. A 79, 879 (2004)CrossRefADSGoogle Scholar
  5. 5.
    G. Ausanio, A.C. Barone, V. Iannotti, P. Scardi, M. D’Incau, S. Amoruso, M. Vitiello, L. Lanotte, Nanotechnology 17, 536 (2006)CrossRefADSGoogle Scholar
  6. 6.
    B.R. Tull, J.E. Carey, M.A. Sheedy, C. Friend, E. Mazur, Appl. Phys. A 83, 341 (2006)CrossRefADSGoogle Scholar
  7. 7.
    M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80, 4076 (1998)CrossRefADSGoogle Scholar
  8. 8.
    L. Jiang, H.L. Tsai, J. Phys. D Appl. Phys. 37, 1492 (2004)CrossRefGoogle Scholar
  9. 9.
    N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, J. Phys. D Appl. Phys. 37, 638 (2004)CrossRefADSGoogle Scholar
  10. 10.
    T.E. Glover, J. Opt. Soc. Am. B 20, 125 (2003)CrossRefADSGoogle Scholar
  11. 11.
    T.E. Itina, F. Vidal, Ph. Delaporte, M. Sentis, Appl. Phys. A 79, 1089 (2004)Google Scholar
  12. 12.
    D. Perez, L.J. Lewis, Appl. Phys. A 79, 987 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002)CrossRefADSGoogle Scholar
  14. 14.
    C. Cheng, X. Xu, Phys. Rev. B 72, 165415 (2005)CrossRefADSGoogle Scholar
  15. 15.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004)ADSGoogle Scholar
  16. 16.
    S. Amoruso, R. Bruzzese, M. Vitiello, N.N. Nedialkov, P.A. Atanasov, J. Appl. Phys. 98, 044907 (2005)CrossRefADSGoogle Scholar
  17. 17.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)CrossRefADSGoogle Scholar
  18. 18.
    S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D Appl. Phys. 40, 331 (2007)CrossRefADSGoogle Scholar
  19. 19.
    S. Amoruso, G. Ausanio, R. Bruzzese, L. Lanotte, P. Scardi, M. Vitiello, X. Wang, J. Phys. C Condens. Matter 18, L49 (2006)CrossRefADSGoogle Scholar
  20. 20.
    S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, Phys. Rev. B 71, 033406 (2005)CrossRefADSGoogle Scholar
  21. 21.
    Y. Okano, K. Oguri, T. Nishikawa, H. Nakano, Appl. Phys. Lett. 89, 221502 (2006)CrossRefADSGoogle Scholar
  22. 22.
    S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)CrossRefADSGoogle Scholar
  23. 23.
    S. Amoruso, A. Sambri, X. Wang, J. Appl. Phys. 100, 013302 (2006)CrossRefADSGoogle Scholar
  24. 24.
    W.C. Martin, J. Sugar, A. Musgrove, G.R. Dalton, W.L. Wiese, J.R. Fuhr, D.E. Kelleher, NIST Database for Atomic Spectroscopy (NIST, Gaithersburg, MD, 1995)Google Scholar
  25. 25.
    S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, Europhys. Lett. 67, 404 (2004)CrossRefADSGoogle Scholar
  26. 26.
    D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003)CrossRefADSGoogle Scholar
  27. 27.
    X. Zeng, N. Koshizaki, T. Sasaki, Appl. Phys. A 69, S253 (1999)CrossRefADSGoogle Scholar
  28. 28.
    S.J. Henley, J.D. Carey, S.R.P. Silva, G.M. Fuge, M.N.R. Ashfold, D. Anglos, Phys. Rev. B 72, 205413 (2005)CrossRefADSGoogle Scholar
  29. 29.
    F. Claeyssens, S.J. Henley, M.N.R. Ashfold, J. Appl. Phys. 94, 2203 (2003)CrossRefADSGoogle Scholar
  30. 30.
    P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Opt. Commun. 114, 106 (1995)CrossRefADSGoogle Scholar
  31. 31.
    P.P. Pronko, P.A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, G. Mourou, Phys. Rev. B 58, 2387 (1998)CrossRefADSGoogle Scholar
  32. 32.
    S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, X. Wang, Appl. Surf. Sci. 252, 4863 (2006)CrossRefADSGoogle Scholar
  33. 33.
    K. Vestentoft, P. Balling, Appl. Phys. A 84, 207 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Coherentia CNR-INFM and Dipartimento di Scienze FisicheUniversità degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations