Applied Physics A

, Volume 89, Issue 3, pp 593–597 | Cite as

Manipulating superconductivity in perpendicularly magnetized FSF triple layers

  • A. Singh
  • C. Sürgers
  • M. Uhlarz
  • S. Singh
  • H. von Löhneysen
Article

Abstract

We investigate the superconducting transition temperature Tc of epitaxial ferromagnet/superconductor/ferromagnet (FSF) triple layers with perpendicular magnetic anisotropy. Due to the different coercive fields of the top and bottom F layers (F=[Co/Pt] multilayer) different magnetized states can be achieved: a fully magnetized state where the F layer magnetizations are parallel oriented, a state DM where one layer is demagnetized, and a state DD where both layers are demagnetized. Tc is maximum in the fully magnetized state and decreases consecutively from the DM to the DD state due to the different contributions from magnetic stray fields originating from the domain walls present in the demagnetized layers. The role of the proximity effect and the effect of the stray fields on the superconductivity in the S layer can be distinguished by analyzing the temperature dependence of the upper critical field and by comparison with data taken on an FISIF multilayer where I is an insulating SiO2 barrier. Hence, we demonstrate that Tc can be manipulated by the intentional creation of different stray-field configurations in the F layers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Buzdin, Rev. Mod. Phys. 77, 935 (2005)CrossRefADSGoogle Scholar
  2. 2.
    F.S. Bergeret, A.F. Volkov, K.B. Efetov, Rev. Mod. Phys. 77, 1321 (2005)CrossRefADSGoogle Scholar
  3. 3.
    L.R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999)CrossRefADSGoogle Scholar
  4. 4.
    A.I. Buzdin, A.V. Vedyayev, N.V. Ryzhanova, Europhys. Lett. 48, 686 (1999)CrossRefADSGoogle Scholar
  5. 5.
    J.Y. Gu, C.Y. You, J.S. Jiang, J. Pearson, Ya.B. Bazaliy, S.D. Bader, Phys. Rev. Lett. 89, 267001 (2002)Google Scholar
  6. 6.
    T. Yamashita, H. Imamura, S. Takahashi, S. Maekawa, Phys. Rev. B 67, 094515 (2006)CrossRefGoogle Scholar
  7. 7.
    V. Peña, Z. Sefrioui, D. Arias, C. Leon, J. Santamaria, J.L. Martinez, S.G.E. teVelthuis, A. Hoffmann, Phys. Rev. Lett. 94, 057002 (2005)CrossRefADSGoogle Scholar
  8. 8.
    A.Y. Rusanov, S. Habraken, J. Aarts, Phys. Rev. B 73, 060505(R) (2006)Google Scholar
  9. 9.
    I.C. Moraru, W.P. Pratt, N.O. Birge, Phys. Rev. B 74, 220507(R) (2006)Google Scholar
  10. 10.
    A.Y. Rusanov, M. Hesselberth, J. Aarts, A.I. Buzdin, Phys. Rev. Lett. 93, 057002 (2004)CrossRefADSGoogle Scholar
  11. 11.
    W. Gillijns, A.Y. Aladyshkin, M. Lange, M.J. Van Bael, V.V. Moshchalkov, Phys. Rev. Lett. 93, 227003 (2005)CrossRefADSGoogle Scholar
  12. 12.
    C. Bell, S. Turşucu, J. Aarts, cond-mat/0610667 (2006)Google Scholar
  13. 13.
    M.T. Johnson, P.J.H. Bloemen, F.J.A. den Broeder, J.J. De Vries, Rep. Prog. Phys. 59, 1409 (1996)CrossRefADSGoogle Scholar
  14. 14.
    J. Fritzsche, V.V. Moshchalkov, H. Eitel, D. Koelle, R. Kleiner, R. Szymczak, Phys. Rev. Lett. 96, 247003 (2006)CrossRefADSGoogle Scholar
  15. 15.
    A.Y. Aladyshkin, A.I. Buzdin, A.A. Fraerman, A.S. Mel’nikov, D.A. Ryzhov, A.V. Sokolov, Phys. Rev. B 68, 184508 (2003)CrossRefADSGoogle Scholar
  16. 16.
    E. Bauer, J.H. van der Merwe, Phys. Rev. B 33, 3657 (1986)CrossRefADSGoogle Scholar
  17. 17.
    S. Singh, S. Basu, M. Vedpathak, R.H. Kodama, R. Chitra, Y. Goud, Appl. Surf. Sci. 240, 251 (2005)CrossRefADSGoogle Scholar
  18. 18.
    A. Singh, C. Sürgers, H. v. Löhneysen, Phys. Rev. B 75, 024513 (2007)CrossRefADSGoogle Scholar
  19. 19.
    V.A. Vas’ko, V.A. Larkin, P.A. Kraus, K.R. Nikolaev, D.E. Grupp, C.A. Nordman, A.M. Goldman, Phys. Rev. Lett. 78, 1134 (1997)CrossRefADSGoogle Scholar
  20. 20.
    C.C. Fu, Z. Huang, N.C. Yeh, Phys. Rev. B 65, 224516 (2202)CrossRefGoogle Scholar
  21. 21.
    L. Fratila, I. Maurin, C. Dubourdieu, J.C. Villegier, Appl. Phys. Lett. 86, 122505 (2005)CrossRefADSGoogle Scholar
  22. 22.
    R.J. Soulen, M.S. Osofsky, B. Nodgorny, T. Ambrose, P. Broussard, S.F. Chang, J. Byers, C.T. Tanaka, J. Nowack, J.S. Moodera, G. Laprade, A. Baryy, M.D. Coey, J. Appl. Phys. 85, 4589 (1999)CrossRefADSGoogle Scholar
  23. 23.
    R. Steiner, P. Ziemann, Phys. Rev. B 74, 094504 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Z. Radović, L. Dobrosavljević-Grujić, A.I. Buzdin, J.R. Clem, Phys. Rev. B 38, 2388 (1988)CrossRefADSGoogle Scholar
  25. 25.
    H.W. Weber, E. Seidl, C. Laa, E. Schachinger, M. Prohammer, A. Junod, D. Eckert, Phys. Rev. B 44, 7485 (1991)ADSGoogle Scholar
  26. 26.
    M. Lange, M.J. Van Bael, V.V. Moshchalkov, Phys. Rev. B 68, 174522 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Singh
    • 1
  • C. Sürgers
    • 1
    • 2
  • M. Uhlarz
    • 1
  • S. Singh
    • 3
  • H. von Löhneysen
    • 1
    • 2
    • 4
  1. 1.Physikalisches InstitutUniversität KarlsruheKarlsruheGermany
  2. 2.Center for Functional NanostructuresUniversität KarlsruheKarlsruheGermany
  3. 3.Solid State Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Institut für FestkörperphysikForschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations