Applied Physics A

, Volume 89, Issue 1, pp 115–119

Ultra-sharp α-Fe2O3 nanoflakes: growth mechanism and field-emission

  • Zhe Zheng
  • Yunzhong Chen
  • Zexiang Shen
  • Jan Ma
  • Chorng-Haur Sow
  • Wei Huang
  • Ting Yu
Rapid communication

Abstract

We report the synthesis of single-crystalline α-Fe2O3 nanoflakes from a simple Fe–air reaction within the temperatures range of 260–400 °C. The nanoflakes synthesized at the lowest temperature (260 °C) in this work show an ultra-sharp morphology: 5–10 nm in thickness, 1–2 μm in length, 20 nm in base-width and around 5 nm at the tips; successfully demonstrate the promising electron field emission properties of a large-scaled α-Fe2O3 nanostructure film and exhibit the potential applications as future field-emission (FE) electron sources and displays (FEDs). The formation and growth of α-Fe2O3 nanostructures were discussed based on the surface diffusion mechanism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ohno, Science 281, 951 (1998)CrossRefADSGoogle Scholar
  2. 2.
    M. Huang, S. Mao, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)CrossRefADSGoogle Scholar
  3. 3.
    W.S. Yun, J.J. Urban, Q. Gu, H. Park, Nano Lett. 2, 447 (2002)CrossRefADSGoogle Scholar
  4. 4.
    R. Fan, Y.Y. Wu, D.Y. Li, M. Yue, A. Majumdar, P.D. Yang, J. Am. Chem. Soc. 125, 5254 (2003)CrossRefGoogle Scholar
  5. 5.
    X.D. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004)CrossRefADSGoogle Scholar
  6. 6.
    Y. Saito, S. Uemura, Carbon 38, 169 (2000)CrossRefGoogle Scholar
  7. 7.
    T. Yu, Y.W. Zhu, X.J. Xu, Z.X. Shen, P. Chen, C.T. Lim, J.T.L. Thong, C.H. Sow, Adv. Mater. 17, 1595 (2005)CrossRefGoogle Scholar
  8. 8.
    T. Yu, Y.W. Zhu, X.J. Xu, K.S. Yeong, Z.X. Shen, P. Chen, C.T. Lim, J.T.L. Thong, C.H. Sow, Small 2, 80 (2006)CrossRefGoogle Scholar
  9. 9.
    J.S. Han, T. Bredow, D.E. Davey, A.B. Yu, D.E. Mulcahy, Sens. Actuators B 75, 18 (2001)CrossRefGoogle Scholar
  10. 10.
    S.N. Frank, A.J. Bard, J. Phys. Chem. 81, 1484 (1977)CrossRefGoogle Scholar
  11. 11.
    J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T.N. Nilsen, P.C. Mørk, P. Stenstad, E. Hornse, O. Olsvik, Prog. Polym. Sci. 17, 87 (1992)CrossRefGoogle Scholar
  12. 12.
    X.Y. Liu, X.B. Ding, Z.H. Zheng, Y.X. Peng, A.S.C. Chan, C.W. Yip, X.P. Long, Polym. Int. 52, 235 (2003)CrossRefGoogle Scholar
  13. 13.
    X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang, S.H. Yang, J. Phys. Chem. B 109, 215 (2005)CrossRefGoogle Scholar
  14. 14.
    Y.M. Zhao, Y.H. Li, R.Z. Ma, M.J. Roe, D.G. McCartney, Y.Q. Zhu, Small 2, 422 (2006)CrossRefGoogle Scholar
  15. 15.
    Y.Y. Fu, R.M. Wang, J. Xu, J. Chen, Y. Yan, A.V. Narlikar, H. Zhang, Chem. Phys. Lett. 379, 373 (2003)CrossRefADSGoogle Scholar
  16. 16.
    T. Yu, X. Zhao, Z.X. Shen, Y.H. Wu, W.H. Su, J. Cryst. Growth 268, 590 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Y.W. Zhu, T. Yu, A.T.S. Wee, X.J. Xu, C.T. Lim, J.T.L. Thong, C.H. Sow, Appl. Phys. Lett. 87, 023103 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16, 88 (2005)CrossRefADSGoogle Scholar
  19. 19.
    Joint Committee on Powder Diffraction Standards (JCPDS), Card No. 87 1166, hematite (α-Fe2O3)Google Scholar
  20. 20.
    I.R. Beattie, T.R. Gilson, J. Chem. Soc. A 5, 980 (1983)Google Scholar
  21. 21.
    J.L. Verble, Phys. Rev. B 9, 5236 (1974)CrossRefADSGoogle Scholar
  22. 22.
    R. Takagi, J. Phys. Soc. Japan 12, 1212 (1957)ADSCrossRefGoogle Scholar
  23. 23.
    R. Fowler, L.W. Nordheim, Proc. R. Soc. London A 119, 173 (1928)CrossRefADSGoogle Scholar
  24. 24.
    V.E. Hendrich, P.A. Cox, in: Surface Science of Metal Oxides (Cambridge Univ. Press, Cambridge, 1994)Google Scholar
  25. 25.
    Q. Zhao, J. Xu, X.Y. Xu, Z. Wang, D.P. Yang, Appl. Phys. Lett. 85, 5331 (2005)CrossRefADSGoogle Scholar
  26. 26.
    Y.W. Ok, T.Y. Seong, C.J. Choi, K.N. Tu, Appl. Phys. Lett. 88, 043106 (2006)CrossRefADSGoogle Scholar
  27. 27.
    Q. Xiang, Q.X. Wang, Z. Wang, X.Z. Zhang, L.Q. Liu, J. Xu, D.P. Yu, Appl. Phys. Lett. 86, 243103 (2005)CrossRefADSGoogle Scholar
  28. 28.
    Y.L. Chueh, M.W. Lai, J.Q. Liang, L.J. Chou, Z.L. Wang, Adv. Funct. Mater. 16, 2243 (2006)CrossRefGoogle Scholar
  29. 29.
    I. Alexandrou, E. Kymakis, G.A.J. Amaratunga, Appl. Phys. Lett. 80, 1435 (2002)CrossRefADSGoogle Scholar
  30. 30.
    J.W. Gadzuk, E.W. Plummer, Rev. Mod. Phys. 45, 487 (1973)CrossRefADSGoogle Scholar
  31. 31.
    J. Zhou, L. Gong, S.Z. Deng, J. Chen, J.C. She, N.S. Xu, R. Yang, Z.L. Wang, Appl. Phys. Lett. 87, 223108 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Zhe Zheng
    • 1
  • Yunzhong Chen
    • 2
  • Zexiang Shen
    • 1
  • Jan Ma
    • 2
  • Chorng-Haur Sow
    • 3
    • 4
  • Wei Huang
    • 5
  • Ting Yu
    • 1
  1. 1.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of PhysicsNational University of SingaporeSingaporeSingapore
  4. 4.National University of Singapore Nanoscience and Nanotechnology InitiativeSingaporeSingapore
  5. 5.Institute of Advanced Materials (IAM)Fudan UniversityShanghaiP.R. China

Personalised recommendations