Advertisement

Applied Physics A

, Volume 89, Issue 2, pp 467–474 | Cite as

The influence of rf plasma time on the carbonitriding treatment of titanium

  • M. Raaif
  • F.M. El-Hossary
  • N.Z. Negm
  • S.M. Khalil
  • P. Schaaf
Article

Abstract

Inductively coupled radio frequency plasma surface treatment was applied to commercially pure titanium sheets. The goal was to increase the efficiency of the carbonitriding process, i.e., to decrease the plasma treatment time to a few tens of minutes instead of several hours. The effects of different plasma-processing times on the microstructure and mechanical properties of plasma-carbonitrided Ti were examined. The characteristics of the carbonitrided layer were investigated by microhardness testing, surface roughness measurements, optical microscopy and X-ray diffraction. The surface microhardness and the thickness of the compound layer of carbonitrided Ti increase with the plasma-processing time. Surface energy, yield strength and Young’s modulus for carbonitrided titanium were calculated from the Vickers microhardness data. An attempt was made to interpret the high carbonitriding rate and the high microhardness values of carbonitrided titanium with respect to previously published results.

Keywords

Compound Layer Titanium Sample Plasma Nitriding Surface Roughness Measurement Surface Microhardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.G. Budinski, Wear 151, 203 (1991)CrossRefGoogle Scholar
  2. 2.
    F. Borgioli, E. Galvanetto, A. Fossati, G. Pradelli, Surf. Coat. Technol. 184, 255 (2004)CrossRefGoogle Scholar
  3. 3.
    H. Conrad, Prog. Mater. Sci. 26, 123 (1982)CrossRefGoogle Scholar
  4. 4.
    A. Bloyce, P.H. Morton, T. Bell, in: ASM Handbook, vol. 5 (ASM International, Materials Park, OH, USA, 1994), p. 835Google Scholar
  5. 5.
    T. Wierzchon, J. Rudnicki, M. Hering, R. Niedbala, Vacuum 48, 499 (1997)CrossRefGoogle Scholar
  6. 6.
    T. Ishigaki, H. Haneda, N. Okada, S. Ito, Thin Solid Films 390, 20 (2001)CrossRefGoogle Scholar
  7. 7.
    A. Korhonen, E.I. Meletis, A. Erdemir, G.R. Fenske, Surf. Coat. Technol. 73, 39 (1995)CrossRefGoogle Scholar
  8. 8.
    F.M. El-Hossary, N.Z. Negm, S.M. Khalil, M. Raaif, Appl. Surf. Sci. 239, 142 (2005)CrossRefADSGoogle Scholar
  9. 9.
    F.M. El-Hossary, N.Z. Negm, S.M. Khalil, M. Raaif, Thin Solid Films 497, 196 (2006)CrossRefGoogle Scholar
  10. 10.
    S.Y. Wang, P.K. Chu, B.Y. Tang, X.C. Zeng, Y.B. Chen, X.F. Wang, Surf. Coat. Technol. 93, 309 (1997)CrossRefGoogle Scholar
  11. 11.
    F. El-Hossary, N.Z. Negm, S.M. Khalil, A.M.A. Elrahman, Thin Solid Film 405, 179 (2002)Google Scholar
  12. 12.
    F.J. Gil, R. Canedo, A. Padros, E. Sada, J. Biomater. Appl. 17, 31 (2002)Google Scholar
  13. 13.
    V.M. Fedirko, I.M. Pogrelyuk, Sov. Mater. Sci. 26, 559 (1990)Google Scholar
  14. 14.
    B.S. Yllbas, A.Z. Sahin, A.Z. Al-Garni, S.A.M. Said, Z. Ahmed, B.J. Abdulaleem, M. Sami, Surf. Coat. Technol. 80, 287 (1996)CrossRefGoogle Scholar
  15. 15.
    E. Czarnowska, T. Wierzchon, A. Maranda-Niedbata, E. Karczmarewicz, J. Mater. Sci. 11, 73 (1999)Google Scholar
  16. 16.
    F. Fröhlich, P. Grau, W. Grellmann, Phys. Stat. Solidi A 42, 79 (1977)CrossRefGoogle Scholar
  17. 17.
    G.H. Frischat, in: Strength of Inorganic Glass, ed. by C.R. Kurkjian (Plenum Press, New York, 1985), p. 135Google Scholar
  18. 18.
    K. Hirao, M. Tomozawa, J. Am. Ceram. Soc. 70, 497 (1987)CrossRefGoogle Scholar
  19. 19.
    K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970)Google Scholar
  20. 20.
    B. Jonsson, S. Hogmark, Thin Solids Films 114, 257 (1984)Google Scholar
  21. 21.
    PDI Webmaster, November 30 (2000), Surface Metallurgy Guide. http://www.predev.com/smg/parameters.htmGoogle Scholar
  22. 22.
    C. Blawert, A. Weisheit, B.L. Mordike, F.M. Knoop, Surf. Coat. Technol. 85, 15 (1996)CrossRefGoogle Scholar
  23. 23.
    A. Wennerberg, C. Hallgren, C. Johansson, S.A. Danelli, Clin. Oral Implants 9, 11 (1998)Google Scholar
  24. 24.
    A. Wennerberg, T. Albrektsson, B. Albrektsson, J.J. Krol, Clin. Oral Implant. 6, 24 (1996)Google Scholar
  25. 25.
    S. Hansson, M. Norton, J. Biomech. 32, 829 (1999)Google Scholar
  26. 26.
    D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom, D. Buser, J. Biomed. Mater. 40, 1 (1998)Google Scholar
  27. 27.
    M. Esposito, P. Coulthard, P. Thomsen, H.V. Worthington, Cochrane Database Syst Rev 2005:25:CD003815Google Scholar
  28. 28.
    D.P. Shashkov, Metallovedenie i Termicheskaya Obrabotka Metallov 6, 20 (2001)Google Scholar
  29. 29.
    T.M. Muraleedharm, E.I. Meletics, Thin Solid Films 221, 104 (1992)CrossRefGoogle Scholar
  30. 30.
    J. Mizera, R.Y. Fillit, T. Wierzchon, J. Mater. Sci. Lett. 17, 1291 (1998)CrossRefGoogle Scholar
  31. 31.
    F. El-Hossary, Surf. Coat. Technol. 150, 177 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Raaif
    • 1
    • 2
  • F.M. El-Hossary
    • 1
  • N.Z. Negm
    • 1
  • S.M. Khalil
    • 1
  • P. Schaaf
    • 2
  1. 1.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt
  2. 2.II. Physikalisches InstitutUniversity of GöttingenGöttingenGermany

Personalised recommendations