Advertisement

Applied Physics A

, Volume 89, Issue 1, pp 127–132 | Cite as

Origins of waveguiding in femtosecond laser-structured LiNbO3

  • J. BurghoffEmail author
  • S. Nolte
  • A. Tünnermann
Rapid communication

Abstract

Femtosecond laser-induced structural changes in LiNbO3 are studied. Depending on the laser processing parameters two different types of modification are identified and their origin is discussed. Both types of modification can be described within the framework of induced lattice defects. For strong material damage a refractive index increase can be obtained due to the induced stress field. By appropriate tailoring of this stress field thermally stable and highly symmetric waveguides can be obtained well suited for nonlinear integrated-optical applications.

Keywords

Refractive Index Refractive Index Change Photorefractive Effect Relative Volume Change Refractive Index Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.N. Korkishko, V.A. Fedorov, Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics, 1st edn. (Cambridge International Science Publishing, 1999)Google Scholar
  2. 2.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    S. Nolte, M. Will, J. Burghoff, A. Tünnermann, Appl. Phys. A 77, 109 (2003)CrossRefADSGoogle Scholar
  4. 4.
    L. Gui, B. Xu, T.C. Chong, IEEE Photon. Technol. Lett. 16, 1337 (2004)CrossRefADSGoogle Scholar
  5. 5.
    R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Appl. Phys. Lett. 88, 111109 (2006)CrossRefADSGoogle Scholar
  6. 6.
    J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, Appl. Surf. Sci. (2007) DOI: 10.1016/j.apsusc.2007.02.148Google Scholar
  7. 7.
    A.H. Nejadmalayeri, P.R. Herman, Opt. Lett. 31, 2987 (2006)CrossRefADSGoogle Scholar
  8. 8.
    J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann, Appl. Phys. A 86, 165 (2007)CrossRefADSGoogle Scholar
  9. 9.
    T. Gorelik, M. Will, S. Nolte, A. Tünnermann, U. Glatzel, Appl. Phys. A 76, 309 (2003)CrossRefADSGoogle Scholar
  10. 10.
    V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, P. Laporta, Appl. Phys. Lett. 85, 1122 (2004)CrossRefADSGoogle Scholar
  11. 11.
    A.H. Nejadmalayeri, P.R. Herman, J. Burghoff, M. Will, S. Nolte, A. Tünnermann, Opt. Lett. 30, 964 (2005)CrossRefADSGoogle Scholar
  12. 12.
    K. Buse, Appl. Phys. B 64, 273 (1997)CrossRefADSGoogle Scholar
  13. 13.
    F.S. Chen, J. Appl. Phys. 40, 3389 (1969)CrossRefADSGoogle Scholar
  14. 14.
    O. Beyer, I. Breunig, F. Kalkum, K. Buse, Appl. Phys. Lett. 88, 051120 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Y.N. Korkishko, V.A. Fedorov, J. Appl. Phys. 82, 1010 (1997)CrossRefADSGoogle Scholar
  16. 16.
    U. Schlarb, K. Betzler, Phys. Rev. B 48, 15613 (1993)CrossRefADSGoogle Scholar
  17. 17.
    S. Mailis, C. Riziotis, I.T. Wellington, P.G.R. Smith, C.B.E. Gawith, R.W. Eason, Opt. Lett. 28, 1433 (2003)ADSGoogle Scholar
  18. 18.
    A. Muir, G. Daniell, C. Please, I. Wellington, S. Mailis, R. Eason, Appl. Phys. A 83, 389 (2006)CrossRefADSGoogle Scholar
  19. 19.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 1996)Google Scholar
  20. 20.
    P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994)Google Scholar
  21. 21.
    J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, J. Appl. Phys. 87, 3199 (2000)CrossRefADSGoogle Scholar
  22. 22.
    J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, J. Appl. Phys. 84, 5180 (1998)CrossRefADSGoogle Scholar
  23. 23.
    R.S. Weis, T.K. Gaylord, Appl. Phys. A 37, 191 (1985)CrossRefADSGoogle Scholar
  24. 24.
    S.H. Wemple, M. DiDomenico Jr., I. Camlibel, Appl. Phys. Lett. 12, 209 (1968)CrossRefADSGoogle Scholar
  25. 25.
    K. Sugii, M. Fukuma, H. Iwasaki, J. Mater. Sci. 13, 523 (1978)CrossRefADSGoogle Scholar
  26. 26.
    C. Gerthsen, Physik, 8th edn. (Springer, Berlin, 1964)Google Scholar
  27. 27.
    V.V. Atuchin, Nucl. Instrum. Methods Phys. Res. B 168, 498 (2000)CrossRefADSGoogle Scholar
  28. 28.
    H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, D.-Y. Shen, Appl. Opt. 40, 3759 (2001)ADSGoogle Scholar
  29. 29.
    H. Åhlfeldt, J. Webjörn, P.A. Thomas, S.J. Teat, J. Appl. Phys. 77, 4467 (1995)CrossRefADSGoogle Scholar
  30. 30.
    M. DiDomenico Jr., S.H. Wemple, J. Appl. Phys. 40, 720 (1969)CrossRefADSGoogle Scholar
  31. 31.
    M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, K. Goetz, Proc. SPIE 5714, 261 (2005)CrossRefADSGoogle Scholar
  32. 32.
    COMSOL 3.2, http://www.comsol.comGoogle Scholar
  33. 33.
    J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1985)Google Scholar
  34. 34.
    S. Nolte, J. Burghoff, M. Will, A. Tünnermann, Proc. SPIE 5340, 164 (2004)CrossRefADSGoogle Scholar
  35. 35.
    J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, Appl. Phys. Lett. 89, 081108 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für Angewandte PhysikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Fraunhofer-Institut für Angewandte Optik und FeinmechanikJenaGermany

Personalised recommendations