Applied Physics A

, 89:397

Principle and design approach of flat nano-metallic surface plasmonic lens



The principle of a flat nano-metallic surface plasmonic lens is analyzed based on phase matching and effective refractive index theory. The complex relationships between the macro-parameters such as focal length with other design freedoms, e.g. material properties of the lens, sheet thickness, slit width, and slit pitch, are disclosed as well. A set of tailored formulae are derived for the design of such a nano-metallic surface plasmonic lens. Several simplified implementations of the nano-metallic lens such as a lens with equidistant slits but bearing different widths, and a lens with equal slit widths but different pitches are given. The performance of the beyond-diffraction-limit focusing effect is given as well.


  1. 1.
    E. Ozbay, Science 311, 189 (2006)CrossRefADSGoogle Scholar
  2. 2.
    R.H. Ritchie, Phys. Rev. 106, 874 (1957)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002)CrossRefADSGoogle Scholar
  4. 4.
    S.A. Maier, M.D. Friedman, P.E. Barclay, O. Painter, Appl. Phys. Lett. 86, 071103 (2005)CrossRefADSGoogle Scholar
  5. 5.
    J.C. Webber, Y. Lacroute, A. Dereux, Phys. Rev. B 68, 115401 (2003)CrossRefADSGoogle Scholar
  6. 6.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat. Mater. 2, 229 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Z. Liu, J.M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, Nano Lett. 5, 1726 (2005)CrossRefADSGoogle Scholar
  8. 8.
    N. Fang, Z. Liu, T.-J. Yen, X. Zhang, Opt. Express 11, 682 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Sun, H.K. Kim, Appl. Phys. Lett. 85, 642 (2004)CrossRefADSGoogle Scholar
  10. 10.
    L. Yin, V.K. Vlasko-Vlasov, J. Pearson, J.M. Hiller, H. Hua, U. Welp, E. Brown, C.W. Kimball, Nano Lett. 5, 1399 (2005)CrossRefADSGoogle Scholar
  11. 11.
    A. Drezet, A.L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F.R. Aussenegg, A. Leitner, J.R. Krenn, Appl. Phys. Lett. 86, 07104 (2005)Google Scholar
  12. 12.
    A. Dahelin, M. Zach, T. Rindzvicius, M. Kall, D.S. Sutherland, F.J. Hook, J. Am. Chem. Soc. 127, 5043 (2005)CrossRefGoogle Scholar
  13. 13.
    A.J. Haes, R.P. Can Duyne, Anal. Bioanal. Chem. 379, 920 (2004)CrossRefGoogle Scholar
  14. 14.
    T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, Appl. Phys. Lett. 85, 5833 (2004)CrossRefADSGoogle Scholar
  15. 15.
    K. Sasaki, T. Nagamura, J. Appl. Phys. 83, 2894 (1998)CrossRefADSGoogle Scholar
  16. 16.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  17. 17.
    J.B. Pendry, Opt. Express 11, 755 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    H.X. Yuan, B.X. Xu, H.F. Wang, T.C. Chong, Japan. J. Appl. Phys. 45, 787 (2006)CrossRefADSGoogle Scholar
  19. 19.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Science 297, 820 (2003)CrossRefADSGoogle Scholar
  20. 20.
    H.X. Yuan, B.X. Xu, H.F. Wang, T.C. Chong, Japan. J. Appl. Phys. 45, 6974 (2006)CrossRefADSGoogle Scholar
  21. 21.
    W.C. Tan, T.W. Priest, J.R. Sambles, N.P. Wanstall, Phys. Rev. B 59, 112661 (1999)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • H.X. Yuan
    • 1
  • B.X. Xu
    • 1
  • B. Lukiyanchuk
    • 1
  • T.C. Chong
    • 1
  1. 1.Data Storage InstituteSingaporeSingapore

Personalised recommendations