Applied Physics A

, Volume 89, Issue 2, pp 417–422 | Cite as

Rod type photonic crystal optical line defect waveguides with optical modulations



This paper reports the design and principles of two dimensional rod-type photonic crystal (PhC) line defect waveguides for bandgap based optical waveguiding, static modulation and high speed dynamic optical switchings. Experiments were carried out for both high aspect ratio and slab type configurations. The differences in waveguiding mechanisms for the two configurations resulting from the presence of bottom cladding systems, without out-of-plane symmetries are compared for their advantages and disadvantages. In particular, the designs of non-top-clad optical waveguides of layout sizes within micrometers and operational frequencies centered at the optical communication wavelength of 1550 nm, were investigated for the feasibility of large scale integration by batch fabrication process techniques – such as sub-micrometer optical lithography etc. Based on such techniques, specifically designed dispersions of line defect PhC waveguides within a missing row of PhC rods were accompanied by optical testing structures of suitable coupling modes. Optical measurements of waveguiding coefficients were therefore enabled for the different configurations, together with further static and dynamic modulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefADSGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)CrossRefADSGoogle Scholar
  3. 3.
    M.F. Yanik, S. Fan, Phys. Rev. Lett. 92, 08390-1 (2004)Google Scholar
  4. 4.
    M. Loncar, T. Doll, J. Vuckovic, A. Scherer, J. Lightwave Technol. 18, 1402 (2000)CrossRefADSGoogle Scholar
  5. 5.
    S. Lin, E. Chow, V. Hietala, P.R. Vileneuve, J.D. Joannopoulos, Science 282, 274 (1998)CrossRefADSGoogle Scholar
  6. 6.
    M. Tokushima, H. Yamada, Y. Arakawa, Appl. Phys. Lett. 84, 4298 (2004)CrossRefADSGoogle Scholar
  7. 7.
    S. Assefa, P.T. Rakich, P. Bienstman, S.G. Johnson, G.S. Petrich, J.D. Joannopoulos, L.A. Kolodziejski, E.P. Ippen, H.I. Smith, Appl. Phys. Lett. 85, 6110 (2004)CrossRefADSGoogle Scholar
  8. 8.
    S.H.G. Teo, A.Q. Liu, J. Singh, M.B. Yu, J. Vac. Sci. Technol. B 22, 2640 (2004)CrossRefGoogle Scholar
  9. 9.
    A.F. Koenderink, L. Bechger, H.P. Schriemer, A. Lagendijk, W.L. Vos, Phys. Rev. Lett. 88, 143903 (2002)CrossRefADSGoogle Scholar
  10. 10.
    M. Soljacic, M. Ibanescu, S.G. Johnson, Y. Fink, J.D. Joannopoulos, Phys. Rev. E 66, 05560-1 (2002)Google Scholar
  11. 11.
    T.D. Happ, M. Kamp, A. Forchel, Opt. Lett. 26, 1102 (2001)CrossRefADSGoogle Scholar
  12. 12.
    T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, Electron. Lett. 38, 1669 (2002)CrossRefGoogle Scholar
  13. 13.
    S. Leonard, W. Van Driel, M. Schilling, J. Wehrspohn, Phys. Rev. B 66, 161102-1 (2002)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S.H.G. Teo
    • 1
    • 2
  • A.Q. Liu
    • 2
  • J. Singh
    • 1
  • M.B. Yu
    • 1
  • G.Q. Lo
    • 1
  1. 1.Institute of MicroelectronicsSingaporeSingapore
  2. 2.School of Electrical & Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations