Applied Physics A

, Volume 89, Issue 2, pp 337–350 | Cite as

Molecular transport in pulsed optical lattices

Article

Abstract

This paper presents an overview of our recent theoretical and experimental work investigating the application of deep, periodic optical dipole potentials (optical lattices) produced by intense pulsed optical fields for the transport of neutral molecular gases. Our review outlines the deceleration of molecules in a molecular beam to create slow cold molecules and also acceleration for production of hyperthermal molecular beams with velocities in excess of 10 km/s for material processing. We describe how bulk motion can be induced in a gas by a traveling optical lattice, even when the gas is not fully trapped by the lattice. In all these cases energy and momentum can be deposited from laser radiation that is not resonant with any internal states. When significant numbers of gas collisions occur during the lattice/laser pulse, gas heating accompanied by the formation of gas jets in free space and bulk drift in a capillary can be induced. Finally, we describe a new nonintrusive laser diagnostic method for measurement of gas properties based on analysis of light scattered from density perturbations induced by lattices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Karczmarek, J. Wright, P. Corkum, M. Ivanov, Phys. Rev. Lett. 82, 3420 (1999)CrossRefADSGoogle Scholar
  2. 2.
    D. M Villeneuve, S.A. Aseyev, P. Dietrich, M. Spanner, M.Y. Ivanov, P.B. Corkum, Phys. Rev. Lett. 85, 542 (2000)CrossRefADSGoogle Scholar
  3. 3.
    B. Friedrich, D. Herschbach, Phys. Rev. Lett. 74, 4623 (1995)CrossRefADSGoogle Scholar
  4. 4.
    H. Sakai, C.P. Safvan, J.J. Larsen, K.M. Hiligsøe, K. Hald, H. Stapelfeldt, J. Chem. Phys. 110, 10235 (1999)CrossRefADSGoogle Scholar
  5. 5.
    H. Stapelfeldt, H. Sakai, E. Constant, P.B. Corkum, Phys. Rev. Lett. 79, 2787 (1997)CrossRefADSGoogle Scholar
  6. 6.
    H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R.W. Yip, C. Ellert, E. Constant, P.B. Corkum, Phys. Rev. A 57, 2794 (2000)CrossRefADSGoogle Scholar
  7. 7.
    D.M. Villeneuve, S.A. Aseyev, P. Dietrich, M. Spanner, M.Y. Ivanov, P.B. Corkum, Phys. Rev. Lett. 85, 542 (2000)CrossRefADSGoogle Scholar
  8. 8.
    A. Ballard, K. Bonin, J. Louderback, J. Chem. Phys. 113, 5736 (2000)CrossRefADSGoogle Scholar
  9. 9.
    P. Ryytty, M. Kaivola, Phys. Rev. Lett. 84, 5074 (2000)CrossRefADSGoogle Scholar
  10. 10.
    A.P. Kazantsev, Sov. Phys. JETP 36, 861 (1973)Google Scholar
  11. 11.
    A.P. Kazantsev, Sov. Phys. JETP 39, 784 (1974)ADSGoogle Scholar
  12. 12.
    P.B. Corkum, C. Ellert, M. Mehendale, P. Dietrich, S. Hankin, S. Aseyev, D. Rayner, D. Villeneuve, Faraday Discuss. 113, 47 (1999)CrossRefGoogle Scholar
  13. 13.
    H. Stapelfeldt, H. Sakai, E. Constant, P.B. Corkum, Phys. Rev. Lett. 79, 2787 (1997)CrossRefADSGoogle Scholar
  14. 14.
    K.W. Madison, C.F. Bharucha, P.R. Morrow, S.R. Wilkinson, Q.N.B. Sundaram, M.G. Raizen, Appl. Phys. B 65, 693 (1997)CrossRefADSGoogle Scholar
  15. 15.
    E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, C. Salomon, Appl. Phys. B 65, 685 (1997)CrossRefADSGoogle Scholar
  16. 16.
    R.W. Boyd, Nonlinear Optics (Academic Press, Boston, 1992)Google Scholar
  17. 17.
    T. Takekoshi, J.R. Yeh, R.J. Knize, Opt. Commun. 114, 421 (1995)CrossRefADSGoogle Scholar
  18. 18.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999)Google Scholar
  19. 19.
    H. Sakai, C.P. Safvan, J.J. Larsen, K.M. Hiligsoe, K. Hald, H. Stapelfeldt, J. Chem. Phys. 110, 10235 (1999)CrossRefADSGoogle Scholar
  20. 20.
    J.J. Larsen, H. Sakai, C.P. Safvan, I. Wendt-Larsen, H. Stapelfeldt, J. Chem. Phys. 111, 7774 (1999)CrossRefADSGoogle Scholar
  21. 21.
    H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R.W. Yip, C. Ellert, E. Constant, P.B. Corkum, Phys. Rev. A 57, 2794 (1998)CrossRefADSGoogle Scholar
  22. 22.
    P.F. Barker, M.N. Shneider, Phys. Rev. A 64, 033408 (2001)CrossRefADSGoogle Scholar
  23. 23.
    H.L. Bethlem, G. Berden, F.M.H. Crompoets, R.T. Jongma, A.J.A. van Roij, G. Meijer, Nature 406, 491 (2000)CrossRefADSGoogle Scholar
  24. 24.
    P.F. Barker, M.N. Shneider, Phys. Rev. A 65, 065402 (2002)CrossRefADSGoogle Scholar
  25. 25.
    J.D. Anderson Jr., Computational Fluid Mechanics (McGraw-Hill, New York, 1995)Google Scholar
  26. 26.
    J.P. Boris, D.L. Book, J. Comput. Phys. 20, 397 (1976)CrossRefGoogle Scholar
  27. 27.
    M.S. Ivanov, G.N. Markelov, S.F. Gimelshein, S.F. AIAA Paper 98-2669 (1998)Google Scholar
  28. 28.
    R. Fulton, A.I. Bishop, M.N. Shneider, P.F. Barker, Nature Phys. 2, 465 (2006)CrossRefADSGoogle Scholar
  29. 29.
    R. Fulton, A.I. Bishop, M.N. Shneider, P.F. Barker, J. Phys. B 39, S1097 (2006)Google Scholar
  30. 30.
    G. Dong, W. Lu, P.F. Barker, J. Chem. Phys. 118, 1729 (2003)CrossRefADSGoogle Scholar
  31. 31.
    B.B. Kadomtsev, Collective Phenomena in Plasmas (Pergamon Press, Oxford, 1982)Google Scholar
  32. 32.
    F.F. Chen, Introduction to Plasma Physics and Vontrolled Fusion, In: Plasma Physics (Plenum Press, New York, 1984), Vol. 1, 2nd edn., p. 3270Google Scholar
  33. 33.
    M.N. Shneider, P.F. Barker, Phys. Rev. A 71, 053403 (2005)CrossRefADSGoogle Scholar
  34. 34.
    L.D. Landau, Zh. Eksp. Teor. Fiz. 16, 949 (1955)Google Scholar
  35. 35.
    N.J. Fisch, Rev. Mod. Phys. 59, 175 (1987)CrossRefADSGoogle Scholar
  36. 36.
    C. Ngalande, M. Shneider, S. Gimelshein, AIAA Paper 2006-2900 (2006)Google Scholar
  37. 37.
    P. Dietrich, P.B. Corkum, J. Chem. Phys. 97, 3187 (1992)CrossRefADSGoogle Scholar
  38. 38.
    D.K. Russel, Chem. Soc. Rev. 19, 407 (1990)CrossRefGoogle Scholar
  39. 39.
    M.N. Shneider, S.F. Gimelshein, P.F. Barker, J. Appl. Phys. 99, 063102 (2006)CrossRefGoogle Scholar
  40. 40.
    C. Ngalande, S.F. Gimelshein, M.N. Shneider, AIAA Paper 2007-0791 (2007)Google Scholar
  41. 41.
    M.N. Shneider, P.F. Barker, S.F. Gimelshein, J. Appl. Phys. 100, 074902 (2006)CrossRefGoogle Scholar
  42. 42.
    M.N. Shneider, S.F. Gimelshein, P.F. Barker, Laser Phys. Lett. 4, 519 (2007)Google Scholar
  43. 43.
    J. Grinstead, P.F. Barker, Phys. Rev. Lett. 85, 1222 (2000)CrossRefADSGoogle Scholar
  44. 44.
    X. Pan, M.N. Shneider, R.B. Miles, Phys. Rev. Lett. 89, 183001 (2002)CrossRefADSGoogle Scholar
  45. 45.
    X. Pan, P.F. Barker, A. Meschanov, J.H. Grinstead, M.N. Shneider, R.B. Miles, Opt. Lett. 27, 161 (2002)CrossRefADSGoogle Scholar
  46. 46.
    H.T. Bookey, A.I. Bishop, P.F. Barker, Opt. Express 14, 3461 (2006)CrossRefADSGoogle Scholar
  47. 47.
    H.T. Bookey, A.I. Bishop, M.N. Shneider, P.F. Barker, J. Raman Spectrosc. 37, 655 (2006)CrossRefGoogle Scholar
  48. 48.
    R.B. Miles, W.R. Lempert, J.N. Forkey, Meas. Sci. Technol. 12, R33 (2000)CrossRefGoogle Scholar
  49. 49.
    P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)MATHCrossRefADSGoogle Scholar
  50. 50.
    X. Pan, M.N. Shneider, R.B. Miles, Phys. Rev. A 69, 033814 (2004)CrossRefADSGoogle Scholar
  51. 51.
    X. Pan, M.N. Shneider, R.B. Miles, Phys. Rev. A 71, 045801 (2005)CrossRefADSGoogle Scholar
  52. 52.
    C.S. Wang-Chang, G.E. Uhlenbeck, J. de Boer, in: Studies in Statistical Mechanics, ed. by J. de Boer, G.E. Uhlenbeck (North-Holland, Amsterdam, 1964)Google Scholar
  53. 53.
    C.D. Boley, R.C. Desai, G. Tenti, Can. J. Phys. 50, 2158 (1972)ADSGoogle Scholar
  54. 54.
    G. Tenti, C.D. Boley, R.C. Desai, Can. J. Phys. 52, 285 (1974)ADSGoogle Scholar
  55. 55.
    M.N. Shneider, P.F. Barker, X. Pan, R.B. Miles, Opt. Commun. 239, 1 (2004)CrossRefGoogle Scholar
  56. 56.
    H.T. Bookey, M.N. Shneider, P.F. Barker, submitted to Phys. Rev. Lett. (2007)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Princeton UniversityPrincetonUSA
  2. 2.University College LondonLondonUK
  3. 3.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations