Applied Physics A

, Volume 89, Issue 2, pp 247–250 | Cite as

Absolute phase effect in ultrafast optical responses of metal nanostructures

  • M.I. Stockman
  • P. Hewageegana


We predict that nonlinear ultrafast electron photoemission by strong optical fields and, potentially, other nonlinear optical responses of metal nanostructures significantly depend on the absolute (carrier–envelope) phase of excitation pulses. Strong enhancement of the local optical fields produces these responses at excitation intensities lower by order(s) of magnitude than for known systems. Prospective applications include control of ultrafast electron emission and electron injection into nanosystems. A wider class of prospective applications is the determination of the absolute phase of pulses emitted by lasers and atoms, molecules, and condensed matter at relatively low intensities.


Excitation Pulse Prospective Application Nonlinear Optical Response Coherent Control Absolute Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 427, 817 (2004)CrossRefADSGoogle Scholar
  2. 2.
    C. Lemell, X.-M. Tong, F. Krausz, J. Burgdoerfer, Phys. Rev. Lett. 90, 076403 (2003)CrossRefADSGoogle Scholar
  3. 3.
    A. Apolonski, P. Dombi, G.G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz, Phys. Rev. Lett. 92, 073902 (2004)CrossRefADSGoogle Scholar
  4. 4.
    F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, F. Trägger, Phys. Rev. Lett. 84, 5644 (2000)CrossRefADSGoogle Scholar
  5. 5.
    M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 88, 067402 (2002)CrossRefADSGoogle Scholar
  6. 6.
    M.I. Stockman, D.J. Bergman, T. Kobayashi, Phys. Rev. B 69, 054202 (2004)CrossRefADSGoogle Scholar
  7. 7.
    A. Kubo, K. Onda, H. Petek, Z. Sun, Y.S. Jung, H.K. Kim, Nano Lett. 5, 1123 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301 (2007)CrossRefADSGoogle Scholar
  9. 9.
    H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Science 288, 824 (2000)CrossRefADSGoogle Scholar
  10. 10.
    L.V. Keldysh, J. Exp. Theor. Phys. (USSR) 47, 1945 (1964)Google Scholar
  11. 11.
    L.V. Keldysh, J. Exp. Theor. Phys. (USSR) 20, 1307 (1965)Google Scholar
  12. 12.
    P.B. Corkum, N.H. Burnett, F. Brunel, Phys. Rev. Lett. 62, 1259 (1989)CrossRefADSGoogle Scholar
  13. 13.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, Oxford, New York, 1965)zbMATHGoogle Scholar
  14. 14.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)CrossRefADSGoogle Scholar
  15. 15.
    J. Kupersztych, P. Monchicourt, M. Raynaud, Phys. Rev. Lett. 86, 5180 (2001)CrossRefADSGoogle Scholar
  16. 16.
    S.E. Irvine, P. Dombi, G. Farkas, A.Y. Elezzabi, Phys. Rev. Lett. 97, 1468011 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Physics and AstronomyGeorgia State UniversityAtlantaUSA

Personalised recommendations