Applied Physics A

, Volume 89, Issue 2, pp 525–528 | Cite as

A Simple method to prepare multi-walled carbon nanotube/ZnO nanoparticle composites

  • G. Guo
  • J. Guo
  • D. Tao
  • W.C.H. Choy
  • L. Zhao
  • W. Qian
  • Z. Wang


A multi-wall carbon nanotube (MWCNT)/ZnO nanoparticle composite is fabricated by the thermal decomposition of a mixture of Zn(NH3)4CO3, MWCNTs and polyvinyl pyrrolidone (PVP). From the infrared spectra of dried samples of Zn(NH3)4CO3, PVP, and the mixture of Zn(NH3)4CO3 and PVP, we show that there is a coordination interaction between the Zn of Zn(NH3)4CO3 and the carbonyl of PVP. Thermal decomposition of the mixture of Zn(NH3)4CO3 and PVP with MWCNTs results in the decomposition of Zn(NH3)4CO3 to ZnO nanoparticles which are well-dispersed on the outer walls of the MWCNTs. The results show that PVP can be used to control the ZnO nanoparticle size and its dispersion on the MWCNTs walls during decomposition. This method is favorable for large scale synthesis.


Nanoparticle Composite Large Scale Synthesis Size Distribution Histogram Average Outer Diameter Nanorod Prepar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao, D. Zhu, Adv. Mater. 17, 217 (2005)CrossRefGoogle Scholar
  2. 2.
    K.C. Chin, A. Gohel, W.Z. Chen, H.I. Elim, W. Ji, G.L. Chong, C.H. Sow, A.T.S. Wee, Chem. Phys. Lett. 409, 85 (2005)CrossRefADSGoogle Scholar
  3. 3.
    J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, F.S. Sheu, Small 1, 560 (2005)CrossRefGoogle Scholar
  4. 4.
    A.P. Alivisatos, Science 271, 933 (1996)CrossRefADSGoogle Scholar
  5. 5.
    Y.W. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y.J. Liu, W. Ji, J.Y. Lee, Z. Shen, A.T.S. Wee, J.T.L. Thong, C.H. Sow, Adv. Mater. 18, 587 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Fullam, D. Cottel, H. Rensmo, D. Fitzmaurice, Adv. Mater. 12, 1430 (2000)CrossRefGoogle Scholar
  7. 7.
    M.N. Zhang, L. Su, L.Q. Mao, Carbon 44, 276 (2006)CrossRefGoogle Scholar
  8. 8.
    Y.P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L.A. Riddle, Y.J. Yu, D.L. Carrol, Chem. Mater. 13, 2864 (2001)CrossRefGoogle Scholar
  9. 9.
    Y.Y. Liu, J. Tang, X.Q. Chen, W. Chen, G.K.H. Pang, J.H. Xin, Carbon 44, 381 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Endo, Y.A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, M.S. Dresselhaus, Nano Lett. 3, 723 (2003)CrossRefGoogle Scholar
  11. 11.
    V. Tzitzios, V. Georgakilas, E. Oikonomou, M. Karakassides, D. Petridis, Carbon 44, 848 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, S. Bonnamy, Carbon 42, 1147 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Sun, M. Iwasa, L. Gao, Q.H. Zhang, Carbon 42, 885 (2004)CrossRefGoogle Scholar
  14. 14.
    W.Q. Han, A. Zettl, Nano Lett. 3, 681 (2003)CrossRefGoogle Scholar
  15. 15.
    Q. Kuang, S.F. Li, Z.X. Xie, S.C. Lin, X.H. Zhang, S.Y. Xie, R.B. Huang, L.S. Zheng, Carbon 44, 1166 (2006)CrossRefGoogle Scholar
  16. 16.
    F.E. Osterloh, J.S. Martino, H. Hiramatsu, D.P. Hewitt, Nano Lett. 3, 125 (2003)CrossRefGoogle Scholar
  17. 17.
    W.A. de Heer, P. Poncharal, C. Berger, J. Gezo, Z. Song, J. Bettini, D. Ugarte, Science 307, 907 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Z.L. Wang, J. Phys.: Condens. Matter 16, R829 (2004)CrossRefADSGoogle Scholar
  19. 19.
    D.L. Tao, W.Z. Qian, Y. Huang, F. Wei, J. Cryst. Growth 271, 353 (2004)CrossRefGoogle Scholar
  20. 20.
    Z.Y. Jiang, Z.X. Xie, X.H. Zhang, S.C. Lin, T. Xu, S.Y. Xie, R.B. Huang, L.S. Zheng, Adv. Mater. 16, 904 (2004)CrossRefGoogle Scholar
  21. 21.
    W.C.H. Choy, C.F. Guo, K.H. Pang, Y.P. Leung, G.Z. Wang, K.W. Cheah, J. Nanosci. Nanotechnol. 6, 802 (2006)CrossRefGoogle Scholar
  22. 22.
    A.B. Djurišić, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K. Gundu Rao, W.K. Chan, H.F. Lui, C. Surya, Adv. Funct. Mater. 14, 856 (2004)CrossRefGoogle Scholar
  23. 23.
    L. Mädler, W.J. Stark, S.E. Pratsinis, J. Appl. Phys. 92, 6537 (2002)CrossRefADSGoogle Scholar
  24. 24.
    J. Joo, S.G. Kwon, J.H. Yu, T. Hyeon, Adv. Mater. 17, 1837 (2005)CrossRefGoogle Scholar
  25. 25.
    C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Edit. 41, 1188 (2002)CrossRefGoogle Scholar
  26. 26.
    H. Kim, W. Sigmund, Appl. Phys. Lett. 81, 2085 (2002)CrossRefADSGoogle Scholar
  27. 27.
    S.Y. Bae, H.W. Seo, H.C. Choi, J. Park, J. Phys. Chem. B 108, 12318 (2004)CrossRefGoogle Scholar
  28. 28.
    J. Sun, L. Gao, M. Iwasa, Chem. Commun. 7, 832 (2004)CrossRefGoogle Scholar
  29. 29.
    M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y.H. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001)CrossRefGoogle Scholar
  30. 30.
    W.Z. Qian, H. Yu, Q.F. Zhang, F. Wei, Z.W. Wang, Carbon 40, 2968 (2002)CrossRefGoogle Scholar
  31. 31.
    Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, J.M. Zhang, D.Y. Shen, J. Phys. Chem. B 108, 12877 (2004)CrossRefGoogle Scholar
  32. 32.
    P. Jiang, S.Y. Li, S.S. Xie, Y. Gao, L. Song, Chem. Eur. J. 10, 4817 (2004)CrossRefGoogle Scholar
  33. 33.
    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • G. Guo
    • 1
  • J. Guo
    • 1
  • D. Tao
    • 1
  • W.C.H. Choy
    • 2
  • L. Zhao
    • 1
  • W. Qian
    • 3
  • Z. Wang
    • 1
  1. 1.Laboratory of Nanomaterials Chemistry, The Key Laboratory of Science and Technology of Controllable Chemical ReactionsBeijing University of Chemical TechnologyBeijingP.R. China
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongP.R. China
  3. 3.Department of Chemical EngineeringTsinghua UniversityBeijingP.R. China

Personalised recommendations