Applied Physics A

, Volume 88, Issue 4, pp 605–609 | Cite as

Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons

  • D. Korobkin
  • Y.A. Urzhumov
  • B. Neuner III
  • C. Zorman
  • Z. Zhang
  • I.D. Mayergoyz
  • G. Shvets
Invited paper

Abstract

We theoretically and experimentally study electromagnetic properties of a novel mid-infrared metamaterial: optically thin silicon carbide (SiC) membrane perforated by an array of sub-wavelength holes. Giant absorption and transmission is found using Fourier transformed infrared (FTIR) microscopy and explained by introducing a frequency-dependent effective permittivity εeff(ω) of the perforated film. The value of εeff(ω) is determined by the excitation of two distinct types of hole resonances: delocalized slow surface polaritons (SSPs) whose frequencies are largely determined by the array period, and a localized surface polariton (LSP) corresponding to the resonance of an isolated hole. Only SSPs are shown to modify εeff(ω) strongly enough to cause giant transmission and absorption. Because of the sub-wavelength period of the hole array, anomalous optical properties can be directly traced to surface polaritons, and their interpretation is not obscured by diffractive effects. Giant absorbance of this metamaterial can be utilized in designing highly efficient thermal radiation sources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Ozbay, Science 31, 189 (2006)CrossRefADSGoogle Scholar
  2. 2.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)CrossRefADSGoogle Scholar
  3. 3.
    R. Hillenbrandt, T. Taubner, F. Keilmann, Nature 418, 159 (2002)CrossRefADSGoogle Scholar
  4. 4.
    P. Berini, Phys. Rev. B 63, 125417 (2001)CrossRefADSGoogle Scholar
  5. 5.
    R. Zia, M.D. Selker, P.B. Catrysse, M.L. Brongersma, J. Opt. Soc. Am. A 21, 2442 (2004)CrossRefADSGoogle Scholar
  6. 6.
    A. Huber, N. Ocelic, D. Kazantsev, R. Hillenbrandt, Appl. Phys. Lett. 87, 081103 (2005)CrossRefADSGoogle Scholar
  7. 7.
    G. Shvets, Phys. Rev. B 338, 035109 (2003)CrossRefADSGoogle Scholar
  8. 8.
    H. Shin, S. Fan, Phys. Rev. Lett. 96, 073907 (2006)CrossRefADSGoogle Scholar
  9. 9.
    A. Alu, N. Engheta, J. Opt. Soc. Am. B 23, 571 (2006)CrossRefADSGoogle Scholar
  10. 10.
    N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)CrossRefADSGoogle Scholar
  11. 11.
    D.O.S. Melville, R.J. Blaikie, Opt. Express 13, 2127 (2005)CrossRefADSGoogle Scholar
  12. 12.
    D. Korobkin, Y. Urzhumov, G. Shvets, J. Opt. Soc. Am. B 23, 468 (2005)CrossRefADSGoogle Scholar
  13. 13.
    S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Nature 440, 508 (2006)CrossRefADSGoogle Scholar
  14. 14.
    F. Le, N.Z. Lwin, J.M. Steele, M. Kall, N.J. Halas, P. Nordlander, Nano Lett. 5, 2009 (2005)CrossRefADSGoogle Scholar
  15. 15.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)CrossRefADSGoogle Scholar
  16. 16.
    W.L. Barnes, W.A. Murray, J. Dintiger, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004)CrossRefADSGoogle Scholar
  17. 17.
    J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Kall, Nano Lett. 4, 1003 (2004)CrossRefADSGoogle Scholar
  18. 18.
    J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, Nature 416, 61 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Q. Cao, P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002)CrossRefADSGoogle Scholar
  20. 20.
    H. Lezec, T. Thio, Opt. Express 12, 3629 (2004)CrossRefADSGoogle Scholar
  21. 21.
    J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Science 305, 847 (2004)CrossRefADSGoogle Scholar
  22. 22.
    C. Zorman, J. Appl. Phys. 78, 5136 (1995)CrossRefADSGoogle Scholar
  23. 23.
    S. Fan, J.D. Joannopoulos, Phys. Rev. B 65, 235112 (2002)CrossRefADSGoogle Scholar
  24. 24.
    D. Bergman, D. Stroud, Solid State Phys. 46, 147 (1992)CrossRefGoogle Scholar
  25. 25.
    M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 87, 167401 (2001)CrossRefADSGoogle Scholar
  26. 26.
    G. Shvets, Y. Urzhumov, Phys. Rev. Lett. 93, 243902 (2004)CrossRefADSGoogle Scholar
  27. 27.
    D.R. Fredkin, I.D. Mayergoyz, Phys. Rev. Lett. 91, 253902 (2003)CrossRefADSGoogle Scholar
  28. 28.
    I.D. Mayergoyz, D.R. Fredkin, Z. Zhang, Phys. Rev. B 72, 155412 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. Korobkin
    • 1
  • Y.A. Urzhumov
    • 1
  • B. Neuner III
    • 1
  • C. Zorman
    • 2
  • Z. Zhang
    • 3
  • I.D. Mayergoyz
    • 3
  • G. Shvets
    • 1
  1. 1.Department of PhysicsThe University of Texas at AustinAustinUSA
  2. 2.Department of Electrical EngineeringCase Western Reserve UniversityClevelandUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations