Applied Physics A

, Volume 88, Issue 3, pp 443–447 | Cite as

Local measurement of hot-electron phase-coherence at metal surfaces

  • M.A. SchneiderEmail author
  • P. Wahl
  • L. Vitali
  • L. Diekhöner
  • R. Vogelgesang
  • K. Kern


We use scanning tunneling microscopy and spectroscopy to study the energy dependence of hot-electron scattering processes on metal surfaces via the determination of the energy-dependent phase-coherence length. From this an electron lifetime can be determined, which in the case of electrons in the surface state of Ag(111) and in the case of the n=1 image-potential state on Cu(100) shows good agreement with theoretical modeling and other experimental data. The method is based on the quantitative analysis of electron interference patterns. A theoretical analysis shows that the phase-coherence length can be determined in confining nanostructures of a characteristic length scale smaller than the phase-coherence length.


Scanning Tunneling Microscopy Coherence Length Noise Band Scanning Tunneling Spectroscopy Standing Wave Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, U. Höfer, Surf. Sci. Rep. 52, 219 (2004)CrossRefADSGoogle Scholar
  2. 2.
    A. Borisov, J. Gauyacq, A. Kazansky, E. Chulkov, V. Silkin, P. Echenique, Phys. Rev. Lett. 86, 488 (2001)CrossRefADSGoogle Scholar
  3. 3.
    T. Hecht, H. Winter, A. Borisov, J. Gauyacq, A. Kazansky, Phys. Rev. Lett. 84, 2517 (2000)CrossRefADSGoogle Scholar
  4. 4.
    H. Petek, H. Nagano, M.J. Weida, S. Ogawa, J. Phys. Chem. A 104, 10234 (2000)CrossRefGoogle Scholar
  5. 5.
    M.F. Crommie, C.P. Lutz, D.M. Eigler, Nature 363, 524 (1993)CrossRefADSGoogle Scholar
  6. 6.
    B.G. Briner, P. Hofmann, M. Doering, H.-P. Rust, E.W. Plummer, Phys. Rev. B 58, 13931 (1998)CrossRefADSGoogle Scholar
  7. 7.
    L. Bürgi, O. Jeandupeux, H. Brune, K. Kern, Phys. Rev. Lett. 82, 4516 (1999)CrossRefADSGoogle Scholar
  8. 8.
    N. Sato, S. Takeda, T. Nagao, S. Hasegawa, Phys. Rev. B 59, 2035 (1999)CrossRefADSGoogle Scholar
  9. 9.
    L. Diekhöner, M. Schneider, A. Baranov, V. Stepanyuk, K. Kern, Phys. Rev. Lett. 90, 236801 (2003)CrossRefADSGoogle Scholar
  10. 10.
    P. Wahl, M. Schneider, L. Diekhöner, R. Vogelgesang, K. Kern, Phys. Rev. Lett. 91, 106802 (2003)CrossRefADSGoogle Scholar
  11. 11.
    L. Vitali, P. Wahl, M. Schneider, K. Kern, V. Silkin, E. Chulkov, P. Echenique, Surf. Sci. 523, L47 (2003)CrossRefGoogle Scholar
  12. 12.
    K.-F. Braun, K. Rieder, Phys. Rev. Lett. 88, 096801 (2002)CrossRefADSGoogle Scholar
  13. 13.
    S. Crampin, J. Kröger, H. Jensen, R. Berndt, Phys. Rev. Lett. 95, 029701 (2005)CrossRefADSGoogle Scholar
  14. 14.
    P. Echenique, J. Pitarke, E. Chulkov, A. Rubio, Chem. Phys. 251, 1 (2000)CrossRefGoogle Scholar
  15. 15.
    W. Berthold, U. Höfer, P. Feulner, E. Chulkov, V. Silkin, P. Echenique, Phys. Rev. Lett. 88, 056805 (2002)CrossRefADSGoogle Scholar
  16. 16.
    P. Wahl, M. Schneider, L. Diekhöner, R. Vogelgesang, K. Kern, Phys. Rev. Lett. 95, 029702 (2005)CrossRefADSGoogle Scholar
  17. 17.
    H. Rhie, S. Link, H. Dürr, W. Eberhardt, N. Smith, Phys. Rev. B 68, 033410 (2003)CrossRefADSGoogle Scholar
  18. 18.
    S. Crampin, Phys. Rev. Lett. 95, 046801 (2005)CrossRefADSGoogle Scholar
  19. 19.
    J. Kliewer, R. Berndt, E.V. Chulkov, V.M. Silkin, P.M. Echenique, S. Crampin, Science 288, 1399 (2000)CrossRefADSGoogle Scholar
  20. 20.
    F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, S. Hüfner, Phys. Rev. B 63, 115415 (2001)CrossRefADSGoogle Scholar
  21. 21.
    F. Theilmann, R. Matzdorf, A. Goldmann, Surf. Sci. 420, 37 (1999)CrossRefGoogle Scholar
  22. 22.
    C. Reuß, I. Shumay, U. Thomann, M. Kutschera, M. Weinelt, T. Fauster, U. Höfer, Phys. Rev. Lett. 82, 153 (1999)CrossRefADSGoogle Scholar
  23. 23.
    K. Boger, M. Weinelt, T. Fauster, Phys. Rev. Lett. 92, 126803 (2004)CrossRefADSGoogle Scholar
  24. 24.
    J. Kliewer, R. Berndt, S. Crampin, New J. Phys. 3, 22 (2001)CrossRefADSGoogle Scholar
  25. 25.
    H. Jensen, J. Kroeger, R. Berndt, S. Crampin, Phys. Rev. B 71, 155417 (2005)CrossRefADSGoogle Scholar
  26. 26.
    A. Bauer, A. Mühlig, D. Wegner, G. Kaindl, Phys. Rev. B 65, 075421 (2002)CrossRefADSGoogle Scholar
  27. 27.
    S. Crampin, H. Jensen, J. Kröger, L. Limot, R. Berndt, Phys. Rev. B 72, 035443 (2005)CrossRefADSGoogle Scholar
  28. 28.
    E.J. Heller, M.F. Crommie, C.P. Lutz, D.M. Eigler, Nature 389, 464 (1994)CrossRefADSGoogle Scholar
  29. 29.
    L. Bürgi, O. Jeandupeux, A. Hirstein, H. Brune, K. Kern, Phys. Rev. Lett. 81, 5370 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M.A. Schneider
    • 1
    • 2
    Email author
  • P. Wahl
    • 1
  • L. Vitali
    • 1
  • L. Diekhöner
    • 1
    • 3
  • R. Vogelgesang
    • 1
  • K. Kern
    • 1
    • 4
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartGermany
  2. 2.Lehrstuhl für FestkörperphysikUniversität ErlangenErlangenGermany
  3. 3.Institut for Fysik og NanoteknologiAalborg UniversitetAalborgDenmark
  4. 4.Institut de Physique des NanostructuresEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations