Applied Physics A

, Volume 88, Issue 4, pp 699–704

Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing



Photosensitive glass is a potentially important material for micro-fluidic devices that can be integrated with micro-optical components for biochemical analysis. Here, we demonstrate the fabrication of optical waveguides inside glass by femtosecond laser direct writing. The influence of the laser parameters on the waveguide properties is investigated, and it is revealed that the waveguide mode can be well controlled. The single mode is achieved at a low writing energy, while the multimode is achieved with increasing energy. In spite of a longitudinally elongated elliptical shape of the cross-sectional profile, the far-field pattern of the single-mode waveguide shows an almost symmetric profile. The measured propagation loss and the coupling loss are evaluated to be ∼0.6 dB/cm and ∼1.6 dB at a wavelength of 632.8 nm, respectively, under the conditions of 1.0–2.0 μJ pulse energy and 200–500 μm/s scan speed. The increased optical loss is associated with a higher waveguide mode at higher writing energy. Furthermore, the integration of waveguides and a micromirror made of a hollow microplate inside the glass is demonstrated to bend the laser beam at an angle of 90° in a small chip. The bending loss is estimated to be smaller than 0.3 dB.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71, 3329 (1997)CrossRefADSGoogle Scholar
  3. 3.
    T. Gorelik, M. Will, S. Nolte, A. Tünnermann, U. Glatzel, Appl. Phys. A 76, 309 (2003)CrossRefADSGoogle Scholar
  4. 4.
    M. Will, S. Nolte, B.N. Chichkov, A. Tünnnermann, Appl. Opt. 41, 4360 (2002)ADSGoogle Scholar
  5. 5.
    C. Florea, K.A. Winick, J. Lightwave Technol. 21, 246 (2003)CrossRefADSGoogle Scholar
  6. 6.
    S. Nolte, M. Will, J. Burghoff, A. Tünnermann, J. Mod. Opt. 51, 2533 (2004)ADSGoogle Scholar
  7. 7.
    V.R. Bhardwaj, E. Simova, P.B. Corkum, D.M. Rayner, C. Hantovsky, R.S. Taylor, B. Schreder, M. Kluge, J. Zimmer, J. Appl. Phys. 97, 0831021 (2005)CrossRefGoogle Scholar
  8. 8.
    L. Tong, R.R. Gattass, I. Maxwell, J.B. Ashcom, E. Mazur, Opt. Commun. 259, 626 (2006)CrossRefADSGoogle Scholar
  9. 9.
    B. Schaffer, A. Brodeur, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001)CrossRefADSGoogle Scholar
  10. 10.
    J.W. Chan, T.R. Huser, S.H. Risbud, D.M. Krol, Proc. SPIE 4640, 129 (2002)CrossRefGoogle Scholar
  11. 11.
    J.W. Chan, T.R. Huser, S.H. Risbud, D.M. Krol, Opt. Lett. 26, 1726 (2001)ADSGoogle Scholar
  12. 12.
    C.-H. Fan, J.P. Longtin, Appl. Opt. 40, 3124 (2001)ADSGoogle Scholar
  13. 13.
    A.M. Streltsov, N.F. Borelli, J. Opt. Soc. Am. B 19, 2496 (2002)ADSGoogle Scholar
  14. 14.
    C.B. Schaffer, J.F. Garcia, E. Mazur, Appl. Phys. A 76, 351 (2003)CrossRefADSGoogle Scholar
  15. 15.
    J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, Appl. Phys. Lett. 82, 2371 (2003)CrossRefADSGoogle Scholar
  16. 16.
    K. Hirao, K. Miura, J. Non-Cryst. Solids 239, 91 (1998)CrossRefADSGoogle Scholar
  17. 17.
    T.R. Dietrich, W. Ehrfeld, M. Lacher, M. Kramer, B. Speit, Microelectron. Eng. 30, 497 (1996)CrossRefGoogle Scholar
  18. 18.
    K. Sugioka, Y. Cheng, K. Midorikawa, Appl. Phys. A 81, 1 (2005)CrossRefADSGoogle Scholar
  19. 19.
    A.C. Fisher, K.A. Gooch, I.E. Henley, K. Yunus, Anal. Sci. 17, 371 (2001)Google Scholar
  20. 20.
    Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Opt. Lett. 28, 55 (2003)ADSGoogle Scholar
  21. 21.
    Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Opt. Lett. 28, 1144 (2003)ADSGoogle Scholar
  22. 22.
    A.A. Bettiol, S. Venugopal Rao, E.J. Teo, J.A. van Kan, F. Watt, Appl. Phys. Lett. 88, 1711061 (2006)CrossRefGoogle Scholar
  23. 23.
    K.J. Moh, Y.Y. Tan, X.-C. Yuan, D.K.Y. Low, Z.L. Li, Opt. Express 13, 7288 (2005)CrossRefADSGoogle Scholar
  24. 24.
    A.A. Bettiol, S. Venugopal Rao, T.C. Sum, J.A. van Kan, F. Watt, J. Cryst. Growth 288, 209 (2006)CrossRefADSGoogle Scholar
  25. 25.
    L. Li, G. Nordin, J. English, J. Jiang, Opt. Express 11, 282 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    S. Hiramatsu, T. Mikawa, O. Ibaragi, K. Miura, K. Hirao, IEEE Photon. Technol. Lett. 16, 2075 (2004)CrossRefADSGoogle Scholar
  27. 27.
    M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, K. Midorikawa, Proc. SPIE 4830, 576 (2003)CrossRefADSGoogle Scholar
  28. 28.
    H. Helvajian, P.D. Fuqua, W.W. Hansen, S. Janson, RIKEN Rev. 32, 57 (2001)Google Scholar
  29. 29.
    R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, G. Cerullo, J. Opt. Soc. Am. B 20, 1559 (2003)ADSGoogle Scholar
  30. 30.
    J.J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves (Adam Hilger Series in Optics and Optoelectronics, Bristol, Boston, 1986)MATHGoogle Scholar
  31. 31.
    T. Nagata, M. Kamata, M. Obara, Appl. Phys. Lett. 86, 2511031 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKEN – The Institute of Physical and Chemical ResearchSaitamaJapan

Personalised recommendations