Applied Physics A

, Volume 88, Issue 4, pp 593–600 | Cite as

Field emission of electrons by carbon nanotube twist-yarns

  • Al.A. Zakhidov
  • R. Nanjundaswamy
  • A.N. Obraztsov
  • M. Zhang
  • S. Fang
  • V.I. Klesch
  • R.H. Baughman
  • A.A. Zakhidov
Invited paper

Abstract

Field emission with high current density at low operating voltage was found for the yarns obtained by solid state spinning process from forest of vertically aligned multiwall carbon nanotubes. The nanotube forest was produced catalytically by CVD method. It is found that only a small fraction of carbon nanotubes from their total amount in the yarn yields to electron emission from its free end. This led to resistive heating of the emitting tubes and limiting of the emission current. The field emission microscopy pictures of MWNT yarn in free-end geometry appears to be very different from that of the conventional non-yarn carbon nanotube-based cathodes described in all previous studies. The FEM patterns are found to consist of the set of line and arc segments rather than a set of spots. Possible explanation of this effect is presented and discussed. The field emission from the lateral side of the yarns showed the self-enhanced currents increasing with operation time. We assume that this current increase may be due to untwisting and unwrapping of yarns resulted of application of the electric field. The lowest threshold field of about 0.7 V/μm was obtained after a few cycles of applied field increase. The prototypes of cathodoluminescent lamps and alphanumerical indicators based on MWNT twist-yarn cold cathodes are demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.V. Gulyaev, L.A. Chernozatonskii, Z.Ja. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, Yu.F. Zakharchenko, Le Vide Les Chouches Minces (Suppl. 271) 322 (1994), In 7th Intern. Vacuum Microelectronics Conf. (France, 1994), J. Vac. Sci. Technol. B 13, 435 (1995)Google Scholar
  2. 2.
    L.A. Chernozatonskii, Yu.V. Gulyaev, Z.Ja. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, Yu.F. Zakharchenko, In 8th Intern. Vacuum Microelectronics Conf. (Portland, USA, 1995), p. 363Google Scholar
  3. 3.
    L.A. Chernozatonskii, Yu.V. Gulyaev, Z.Ja. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, Yu.F. Zakharchenko, E.A. Fedorov, V.P. Val’chuk, Chem. Phys. Lett. 233, 63 (1995)Google Scholar
  4. 4.
    J.-M. Bonard, J.-P. Salvetat, T. Stöckli, L. Forro, A. Châtelain, Appl. Phys. A 69, 245 (1999)CrossRefADSGoogle Scholar
  5. 5.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999)CrossRefADSGoogle Scholar
  6. 6.
    M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Mine, J. Appl. Phys. 90, 5308 (2001)CrossRefADSGoogle Scholar
  7. 7.
    A.A. Zakhidov, R. Nanjundaswamy, M. Zhang, S.B. Lee, A.N. Obraztsov, A. Cunningham, A.A. Zakhidov, J. Appl. Phys. 100, 044327 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Zhang, K.R. Atkinson, R.H. Baughman, Science 306, 1358 (2004)CrossRefADSGoogle Scholar
  9. 9.
    R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, MA, 1961), Chapt. 1–2Google Scholar
  10. 10.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)CrossRefADSGoogle Scholar
  11. 11.
    N.Y. Huang, J.C. She, J. Chen, S.Z. Deng, N.S. Xu, H. Bishop, S.E. Huq, L. Wang, D.Y. Zhong, E.G. Wang, D.M. Chen, Phys. Rev. Lett. 93, 075501 (2004)CrossRefADSGoogle Scholar
  12. 12.
    A. G .Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269, 1550 (1995)CrossRefADSGoogle Scholar
  13. 13.
    S.T. Purcell, P. Vincent, C. Journet, Vu Thien Binh, Phys. Rev. Lett. 88, 105502 (2002)Google Scholar
  14. 14.
    M. Sveningsson, R.E. Morjan, O. Nerushev, E.E.B. Campbell, Carbon 42, 1165 (2004)CrossRefGoogle Scholar
  15. 15.
    P. Vincent, S.T. Purcell, C. Journet, Vu Thien Binh, Phys. Rev. B 66, 075406 (2002)Google Scholar
  16. 16.
    P. Gustafson, Carbon 24, 169 (1986)CrossRefGoogle Scholar
  17. 17.
    as referenced by A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD 15, 317 (1991)Google Scholar
  18. 18.
    G. Fursey, Field Emission in Vacuum Microelectronics (Kluwer Academic/Plenum Publishers, New Work, 2005), pp. 39–44Google Scholar
  19. 19.
    Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, Y. Nishina, Nature 389, 554 (1997)CrossRefADSGoogle Scholar
  20. 20.
    Y. Saito, K. Hata, A. Takakura, J. Yotani, S. Uemura, Physica B 323, 30 (2002)CrossRefADSGoogle Scholar
  21. 21.
    N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, Nature 420, 393 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Y. Wei, D. Weng, Y. Yang, X. Zhang, K. Jiang, L. Liu, S. Fan, Appl. Phys. Lett. 89, 063101 (2006)CrossRefGoogle Scholar
  23. 23.
    K.A. Dean, B.R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999)CrossRefADSGoogle Scholar
  24. 24.
    A.N. Obraztsov, A.P. Volkov, A.A. Zakhidov, D.A. Lyashenko, Yu.V. Petrushenko, O.P. Satanovskaya, Appl. Surf. Sci. 215, 214 (2003)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Al.A. Zakhidov
    • 1
  • R. Nanjundaswamy
    • 2
  • A.N. Obraztsov
    • 1
    • 3
  • M. Zhang
    • 2
  • S. Fang
    • 2
  • V.I. Klesch
    • 1
  • R.H. Baughman
    • 2
  • A.A. Zakhidov
    • 2
  1. 1.Physics DepartmentMoscow State UniversityMoscowRussia
  2. 2.UTD-Nanotech InstituteUniversity of Texas at DallasRichardsonUSA
  3. 3.University of JoensuuJoensuuFinland

Personalised recommendations