Applied Physics A

, Volume 88, Issue 1, pp 1–5 | Cite as

Growth, electronic and magnetic properties of doped ZnO epitaxial and nanocrystalline films

  • S.A. ChambersEmail author
  • D.A. Schwartz
  • W.K. Liu
  • K.R. Kittilstved
  • D.R. Gamelin
Invited paper


We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes).


Conduction Band Valence Band Dilute Magnetic Semiconductor Magnetic Circular Dichroism Inverse System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Appl. Phys. Lett. 78, 958 (2001)CrossRefADSGoogle Scholar
  2. 2.
    S.W. Jung, S.-J. An, J.-C. Yi, C.U. Yung, S.I. Lee, S. Cho, Appl. Phys. Lett. 80, 4561 (2002)CrossRefADSGoogle Scholar
  3. 3.
    A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, J. Narayan, Solid State Commun. 121, 371 (2002)CrossRefGoogle Scholar
  4. 4.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nature Mater. 2, 673 (2003)CrossRefADSGoogle Scholar
  5. 5.
    D.C. Kundaliya, S. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, D.R. Shine, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, Nature Mater. 3, 709 (2004)CrossRefADSGoogle Scholar
  6. 6.
    M. Ivill, S.J. Pearton, D.P. Norton, J. Kelly, A.F. Hebard, J. Appl. Phys. 97, 053904 (2005)CrossRefGoogle Scholar
  7. 7.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)CrossRefADSGoogle Scholar
  8. 8.
    M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)CrossRefADSGoogle Scholar
  9. 9.
    K. Sato, H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002)CrossRefADSGoogle Scholar
  10. 10.
    N.Y. Garces, N.C. Giles, L.E. Halliburton, G. Cantwell, D.B. Eason, D.C. Reynolds, D.C. Look, Appl. Phys. Lett. 80, 1334 (2002)CrossRefADSGoogle Scholar
  11. 11.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nature Mater. 4, 42 (2004)CrossRefADSGoogle Scholar
  12. 12.
    A.C. Tuan, J.D. Bryan, A.B. Pakhamov, V. Shutthanandan, S. Thevuthasan, D.E. McCready, D. Gaspar, M.H. Engelhard, J.W. Rogers Jr., K.M. Krishnan, D.R. Gamelin, S.A. Chambers, Phys. Rev. B 70, 054206 (2004)CrossRefGoogle Scholar
  13. 13.
    D.A. Schwartz, D.R. Gamelin, Adv. Mater. 16, 2115 (2004)CrossRefGoogle Scholar
  14. 14.
    N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.V. Kukkadapu, D.A. Schwartz, D.R. Gamelin, J. Am. Chem. Soc. 126, 9387 (2004)CrossRefGoogle Scholar
  15. 15.
    W.K. Liu, M. Salley, D.R. Gamelin, J. Phys. Chem. B 109, 14486 (2005)CrossRefGoogle Scholar
  16. 16.
    R.M. de la Cruz, R. Pareja, R. Gonzalez, L.A. Boatner, Y. Chen, Phys. Rev. B 45, 6581 (1992)CrossRefADSGoogle Scholar
  17. 17.
    K.R. Kittilstved, J. Zhou, W.K. Liu, J.D. Bryan, D.R. Gamelin, cond-mat/0507121 (2005)Google Scholar
  18. 18.
    M. Kobayashi, Y. Ishida, J.I. Hwang, T. Mizokawa, A. Fujimori, K. Mamiya, J. Okamoto, Y. Takeda, T. Okane, Y. Saitoh, Y. Muramatsu, A. Tanaka, H. Saeki, H. Tabata, T. Kawai, cond-mat/0505387 (2005)Google Scholar
  19. 19.
    Y. Natsume, H. Sakata, T. Hirayama, J. Appl. Phys. 72, 4203 (1992)CrossRefADSGoogle Scholar
  20. 20.
    K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147 (2005)CrossRefGoogle Scholar
  21. 21.
    K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nature Mater. 5, 291 (2006)CrossRefADSGoogle Scholar
  22. 22.
    C.K. Jørgensen, Prog. Inorg. Chem. 12, 101 (1970)CrossRefGoogle Scholar
  23. 23.
    A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984)Google Scholar
  24. 24.
    D.C. Look, B. Claflin, Phys. Stat. Solidi B 241, 624 (2004)CrossRefADSGoogle Scholar
  25. 25.
    D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S.A. Chambers
    • 1
    Email author
  • D.A. Schwartz
    • 2
  • W.K. Liu
    • 2
  • K.R. Kittilstved
    • 2
  • D.R. Gamelin
    • 2
  1. 1.Fundamental Science DirectoratePacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations