Applied Physics A

, Volume 88, Issue 1, pp 21–26

Nanostructure size evolution during Au-catalysed growth by carbo-thermal evaporation of well-aligned ZnO nanowires on (100)Si

Article

Abstract

We report the structural and morphological properties of well-aligned ZnO nanowires grown at 750 °C on Au-deposited and annealed (100)Si substrates using carbo-thermal evaporation. As-grown nanowires are made of wurtzite ZnO, have cylindrical shape and carry droplet-like nanoparticles (NPs) at their tips, as expected for vapour–liquid–solid (VLS) growth. Grazing incidence X-ray diffraction measurements demonstrate that the NPs are made of pure fcc Au. No secondary Au/Zn alloy phases were detected. Bragg diffraction patterns confirmed that the nanowires were grown with their crystal c-axes parallel to the [100] direction of Si (i.e. normal to the substrate surface), while Au NPs are mostly (111)-oriented. The diameter distribution of ZnO nanowires mimics that of the Au NPs at their tips. A quantitative study of the nanostructure size distribution after sequential annealing and growth steps evidences the occurrence of three nanoscale processes: (i) Ostwald ripening and/or coalescence of Au NPs before nanowire nucleation, (ii) Au-catalysed VLS nucleation and axial growth of ZnO nanowires and (iii) radial growth of nanowires by a vapour–solid process. These processes originate the NP and nanowire size evolution during the experiments. The present findings are interpreted in terms of Zn vapour pressure changes during carbo-thermal evaporation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)CrossRefADSGoogle Scholar
  2. 2.
    C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett. 81, 3648 (2002)CrossRefADSGoogle Scholar
  3. 3.
    H. Kind, H. Yan, M. Law, B. Messer, P. Yang, Adv. Mater. 14, 158 (2002)CrossRefGoogle Scholar
  4. 4.
    E. Comini, G.P. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, Appl. Phys. Lett. 81, 1869 (2002)CrossRefADSGoogle Scholar
  5. 5.
    E.I. Givargizov, A.A. Chernov, Sov. Phys. Cryst. 18, 89 (1973)Google Scholar
  6. 6.
    J. Song, X. Wang, E. Riedo, Z.L. Wang, J. Phys. Chem. B 109, 9869 (2005)CrossRefGoogle Scholar
  7. 7.
    S.-W. Kim, Sz. Fujita, Sg. Fujita, Appl. Phys. Lett. 86, 153119 (2005)Google Scholar
  8. 8.
    G. Zhang, A. Nakamura, T. Aoki, J. Temmyo, Y. Matsui, Appl. Phys. Lett. 89, 11312 (2006)Google Scholar
  9. 9.
    Y. Zhang, H. Jia, R. Wang, C. Chen, X. Luo, D. Yu, C. Lee, Appl. Phys. Lett. 83, 4631 (2003)CrossRefADSGoogle Scholar
  10. 10.
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113 (2001)CrossRefGoogle Scholar
  11. 11.
    Y. Li, M. Feneberg, A. Reiser, M. Schirra, R. Enchelmaier, A. Ladenburger, A. Langlois, R. Sauer, K. Thonke, J. Cai, H. Rauscher, J. Appl. Phys. 99, 054307 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Sharma, T.I. Kamins, R.S. Williams, Appl. Phys. A 80, 1225 (2005)CrossRefGoogle Scholar
  13. 13.
    O. Nagao, G. Harada, T. Sugawara, A. Sasaki, Y. Ito, Japan. J. Appl. Phys. 43, 7742 (2004)CrossRefGoogle Scholar
  14. 14.
    E. Piscopiello, L. Tapfer, M. Vittori Antisari, P. Paiano, P. Prete, N. Lovergine, Phys. Rev. B, submittedGoogle Scholar
  15. 15.
    G.R. Carlow, R.J. Barel, M. Zinke-Allmang, Phys. Rev. B 56, 12519 (1997)CrossRefADSGoogle Scholar
  16. 16.
    T.Y. Tan, N. Li, U. Gösele, Appl. Phys. A 78, 519 (2004)CrossRefADSGoogle Scholar
  17. 17.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Unità di LecceIstituto per la Microelettronica e Microsistemi (IMM) del CNRLecceItaly
  2. 2.CNISM, Unità di Lecce, and Dipartimento di Ingegneria dell’InnovazioneUniversità di LecceLecceItaly
  3. 3.Dipartimento di Tecnologie Fisiche e Nuovi Materiali (FIM), Centro Ricerche di BrindisiEnte per le Nuove Tecnologie, l’Energia e l’Ambiente (ENEA)BrindisiItaly

Personalised recommendations