Applied Physics A

, Volume 88, Issue 1, pp 89–93 | Cite as

Cathodoluminescence of large-area PLD grown ZnO thin films measured in transmission and reflection

  • R. Johne
  • M. Lorenz
  • H. Hochmuth
  • J. Lenzner
  • H. von Wenckstern
  • G. Zimmermann
  • H. Schmidt
  • R. Schmidt-Grund
  • M. Grundmann
Article

Abstract

Epitaxial ZnO thin films on sapphire substrates can be used as fast and laterally homogeneous scintillators to convert electrons into photons, for example for imaging purpose. We report on the improvement of the cathodoluminescence intensity of epitaxial pulsed laser deposited ZnO films on a-plane sapphire substrates with diameter up to 33 mm. The lateral homogeneity of the integral cathodoluminescence intensity was inspected using a modified RHEED setup. Cathodoluminescence spectra were excited at the ZnO side of the samples and detected both in reflection and in transmission geometry. The redshift of the excitonic cathodoluminescence peak in transmission relative to reflection and the peak shift with the excitation depth can be explained by a model based on self absorption of the photons in the ZnO film.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.W. Moses, Nucl. Instrum. Methods A 487, 123 (2002)CrossRefADSGoogle Scholar
  2. 2.
    S.E. Derenzo, M.J. Weber, E. Bourret-Courchesne, M.K. Klintenberg, Nucl. Instrum. Methods A 505, 111 (2003)CrossRefADSGoogle Scholar
  3. 3.
    M. Lorenz, H. Hochmuth, J. Lenzner, T. Nobis, G. Zimmermann, M. Diaconou, H. Schmidt, H. von Wenckstern, M. Grundmann, Thin Solid Films 486, 205 (2005)CrossRefGoogle Scholar
  4. 4.
    T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 85, 759 (2004)CrossRefADSGoogle Scholar
  5. 5.
    M. Lorenz, E.M. Kaidashev, H. von Wenckstern, V. Riede, C. Bundesmann, D. Spemann, G. Benndorf, H. Hochmuth, A. Rahm, H.-C. Semmelhack, M. Grundmann, Solid State Electron. 47, 2205 (2003)CrossRefGoogle Scholar
  6. 6.
    E.M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003)CrossRefADSGoogle Scholar
  7. 7.
    A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005)CrossRefADSGoogle Scholar
  8. 8.
    M. Lorenz, H. Hochmuth, D. Natusch, H. Börner, K. Kreher, W. Schmitz, Appl. Phys. Lett. 68, 3332 (1996)CrossRefADSGoogle Scholar
  9. 9.
    M. Lorenz, J. Lenzner, E.M. Kaidashev, H. Hochmuth, M. Grundmann, Ann. Phys. (Leipzig) 13, 39 (2004)CrossRefADSGoogle Scholar
  10. 10.
    R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz, J. Lenzner, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 82, 2260 (2003)CrossRefADSGoogle Scholar
  11. 11.
    T. Nobis, E.M. Kaidashev, A. Rahm, M. Lorenz, J. Lenzner, M. Grundmann, Nano Lett. 4, 797 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Lorenz, R. Johne, T. Nobis, H. Hochmuth, J. Lenzner, M. Grundmann, H.P.D. Schenk, S.I. Borenstain, A. Schön, C. Bekeny, T. Voss, J. Gutowski, Appl. Phys. Lett. 89, 243510 (2006)CrossRefGoogle Scholar
  13. 13.
    O. Gelhausen, M.R. Phillips, M. Toth, J. Appl. Phys. 89, 3535 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. Johne
    • 1
  • M. Lorenz
    • 1
  • H. Hochmuth
    • 1
  • J. Lenzner
    • 1
  • H. von Wenckstern
    • 1
  • G. Zimmermann
    • 1
  • H. Schmidt
    • 1
  • R. Schmidt-Grund
    • 1
  • M. Grundmann
    • 1
  1. 1.Institut für Experimentelle Physik IIUniversität LeipzigLeipzigGermany

Personalised recommendations