Applied Physics A

, Volume 87, Issue 3, pp 491–498 | Cite as

New approaches for growth control of GaN-based HEMT structures

  • H. Hardtdegen
  • R. Steins
  • N. Kaluza
  • Y.S. Cho
  • K. Wirtz
  • M. von der Ahe
  • H.L. Bay
  • G. Heidelberger
  • M. Marso
Article
  • 91 Downloads

Abstract

This paper reports on new approaches for growth control of GaN-based heterostructures for high frequency and high power application. First in situ methods are presented and their further development discussed [1]. The development leads to a greatly improved observation of growth parameter influences in the MOVPE of GaN. A new growth process is introduced which enhances growth reproducibility [2]. This new growth process is then optimized with respect to the envisaged application. To this end process modeling will be employed. The application envisaged is the AlxGa1-xN/GaN high electron mobility transistor (HEMT). At last device results will be presented. All in all it will be shown how fundamental research can drive technology and how basic knowledge can be employed for process development with respect to device applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Steins, N. Kaluza, H. Hardtdegen, M. Zorn, K. Haberland, J.-T. Zettler, J. Cryst. Growth 272, 81 (2004)CrossRefGoogle Scholar
  2. 2.
    H. Hardtdegen, N. Kaluza, R. Steins, R. Schmidt, K. Wirtz, E.V. Yakovlev, R.A. Talalaev, Y.N. Makarov, J. Cryst. Growth 272, 407 (2004)CrossRefGoogle Scholar
  3. 3.
    GaN reproducibilityGoogle Scholar
  4. 4.
    read for example in http://www.laytec.deGoogle Scholar
  5. 5.
    H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986)CrossRefADSGoogle Scholar
  6. 6.
    for example A.E. Wickendon, D.D. Koleske, R.L. Henry, R.J. Gorman, M.E. Twigg, M. Fatemi, J.A. Freitas Jr., W.J. Moore, J. Electron. Mater. 29, 21 (2000)Google Scholar
  7. 7.
    D.C. Look, J.R. Sizelove, Phys. Rev. Lett. 35, 1380 (1999)Google Scholar
  8. 8.
    C.R. Kleijn, Chemical Vapor Deposition Processes, in: Computational Modelling in Semiconductor Processing, ed. by M. Meyyappan (Artech House, Boston, 1995), Chapt. 4, pp. 97–230Google Scholar
  9. 9.
    M.G. Jacko, S.J.M. Price, Can. J. Chem. 41, 1560 (1963)CrossRefGoogle Scholar
  10. 10.
    R.A. Talalaev, E.V. Yakovlev, S.Y. Karpov, Y.N. Makarov, J. Cryst. Growth 223, 21 (2001)CrossRefGoogle Scholar
  11. 11.
    H. Hardtdegen, N. Kaluza, R. Schmidt, R. Steins, E.V. Yakovlev, R.A. Talalaev, Y.N. Makarov, J.-T. Zettler, Phys. Stat. Solidi A 201, 312 (2004)CrossRefADSGoogle Scholar
  12. 12.
    H. Hardtdegen, M. Zorn, J.-T. Zettler,Proceedings of the 12th International Workshop on the Physics of Semiconductor Devices, ed. by K.N. Bhat, A. DasGupta (Narosa Publishing House, New Delhi, 2004), pp. 83–89Google Scholar
  13. 13.
    T. Böttcher, E. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, J.S. Speck, Appl. Phys. Lett. 78, 1976 (2001)CrossRefADSGoogle Scholar
  14. 14.
    K. Haberland, A. Kaluza, M. Zorn, M. Pristovesk, H. Hardtdegen, M. Weyers, J.-T. Zettler, W. Richter, J. Cryst. Growth 240, 87 (2002)CrossRefGoogle Scholar
  15. 15.
    F.G. Bobel, A. Wowchak, B. Hertl, J. Van Hove, P.P. Chow, J. Vac. Sci. Technol. B 12, 1207 (1994)CrossRefGoogle Scholar
  16. 16.
    P.J. Timans, J. Appl. Phys. 72, 660 (1992)CrossRefADSGoogle Scholar
  17. 17.
    S.R. Balmer, T. Martin, J. Cryst. Growth 48, 216 (2003)CrossRefGoogle Scholar
  18. 18.
    S.R. Johnson, C. Lavoie, T. Tiedje, J.A. Mackenzie, J. Vac. Sci. Technol. B 11, 1007 (1993)CrossRefGoogle Scholar
  19. 19.
    S. Liu, D. Stevenson, J. Electrochem. Soc. 125, 1161 (1978)CrossRefGoogle Scholar
  20. 20.
    M. Kamp, M. Mayer, A. Pelzmann, K. Ebeling, Mater. Res. Soc. Symp. Proc. 449, 161 (1997)Google Scholar
  21. 21.
    R. Sheknar, K. Jensen, Surf. Sci. 321, 301 (1994)CrossRefGoogle Scholar
  22. 22.
    H. Hardtdegen, N. Kaluza, R. Steins, P. Javorka, K. Wirtz, A. Alam, T. Schmitt, R. Beccard, Phys. Stat. Solidi A 202, 744 (2005)CrossRefADSGoogle Scholar
  23. 23.
    D. Dauelsberg, H. Hardtdegen, A. Kaluza, P. Kaufmann, L. Kadinski, J. Cryst. Growth 223, 21 (2001)CrossRefGoogle Scholar
  24. 24.
    H. Hardtdegen, N. Kaluza, R. Steins, Y.S. Cho, Z. Sofer, M. Zorn, K. Haberland, J.-T. Zettler, Phys. Stat. Solidi B 242, 2581 (2005)CrossRefADSGoogle Scholar
  25. 25.
    B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kaplonek, B.P. Keller, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 68, 643 (1996)CrossRefADSGoogle Scholar
  26. 26.
    W. Lu, V. Kumar, R. Schwindt, E. Piner, I. Adesida, Solid State Electron. 46, 1441 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • H. Hardtdegen
    • 1
  • R. Steins
    • 1
  • N. Kaluza
    • 1
  • Y.S. Cho
    • 1
  • K. Wirtz
    • 1
  • M. von der Ahe
    • 1
  • H.L. Bay
    • 1
  • G. Heidelberger
    • 1
  • M. Marso
    • 1
  1. 1.Center of Nanoelectronic Systems for Information Technology (CNI), Institute of Bio- and NanosystemsResearch Center JülichJülichGermany

Personalised recommendations