Applied Physics A

, Volume 87, Issue 3, pp 569–575 | Cite as

Electrochemical fabrication and characterization of nanocontacts and nm-sized gaps

  • G. Mészáros
  • S. Kronholz
  • S. Karthäuser
  • D. Mayer
  • T. Wandlowski
Article

Abstract

Copper nanocontacts and molecular-sized nanogaps were prepared and characterized at electrified solid/liquid interfaces employing lithographic and electrochemical techniques. A dedicated four-electrode potentiostat was developed for controlling the electrochemical fabrication process and for monitoring the electrical characteristics of the nanostructures created. The formation and breaking of Cu nanocontacts exhibits conductance quantization characteristics. The statistical analysis of conductance histograms revealed a preferential stability of nanocontacts with integer values of G0, with a clear preference for 1 G0, 2 G0 and 3 G0. The growth of molecular-sized gaps shows quantized tunneling current, which is attributed to the discrete nature of Cu atoms, water molecules, and specifically adsorbed ions.

Keywords

PMMA Tunneling Junction Quantum Wire Tunneling Current Atomic Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Meindel, Q. Chen, J.A. Davis, Science 293, 2044 (2001)CrossRefADSGoogle Scholar
  2. 2.
    R.L. McCreery, Chem. Mater. 16, 4477 (2004)CrossRefGoogle Scholar
  3. 3.
    B.A. Mantooth, P.S. Weiss, Proc. IEEE 91, 1785 (2003)CrossRefGoogle Scholar
  4. 4.
    U. Banin, Y. Cao, D. Katz, O. Millo, Nature 400, 542 (1999)CrossRefADSGoogle Scholar
  5. 5.
    D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P. McEuen, Nature 389, 699 (1997)CrossRefADSGoogle Scholar
  6. 6.
    Z. Chen, J. Appenzeller, Y.M. Lin, J. Sippel-Oakley, A.G. Rinzler, J. Tang, S.J. Wind, P.M. Solomon, P. Avouris, Science 311, 1735 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)CrossRefGoogle Scholar
  8. 8.
    E.C. Walter, K. Ng, M.P. Zach, R.M. Penner, F. Favier, Microelectron. Eng. 6162, 555 (2002)Google Scholar
  9. 9.
    A. Aviram, M. Ratner, V. Mujica (Eds.), Molecular Electronics II (Ann. NY Acad. Sci., New York, 2002)Google Scholar
  10. 10.
    M.A. Guillorn, D.W. Carr, R.C. Tibeno, E. Greenbaum, M.L. Simpson, J. Vac. Sci. Technol. B 18, 1177 (2000)CrossRefGoogle Scholar
  11. 11.
    A. Bezryadin, C. Dekker, G. Schmid, Appl. Phys. Lett. 71, 1273 (1997)CrossRefADSGoogle Scholar
  12. 12.
    C. Zhou, M.R. Deshpande, M.A. Reed, H.L. Jones, J.M. Tour, Appl. Phys. Lett. 71, 611 (1997)CrossRefADSGoogle Scholar
  13. 13.
    R. Sordan, M. Burghard, K. Kern, Appl. Phys. Lett. 79, 2073 (2001)CrossRefADSGoogle Scholar
  14. 14.
    C.J. Muller, J.M. van Ruitenbeek, L.J. de Jongh, Physica C 191, 485 (1997)CrossRefADSGoogle Scholar
  15. 15.
    N. Agrait, A. Levi-Yeyati, J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003)CrossRefADSGoogle Scholar
  16. 16.
    J.K. Gimzewski, R. Moller, Phys. Rev. B 36, 1284 (1987)CrossRefADSGoogle Scholar
  17. 17.
    H. Park, P.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Appl. Phys. Lett. 75, 301 (1999)CrossRefADSGoogle Scholar
  18. 18.
    C.Z. Li, N.J. Tao, Appl. Phys. Lett. 72, 894 (1998)CrossRefADSGoogle Scholar
  19. 19.
    A.F. Morpurgo, C.M. Marcus, D.B. Robinson, Appl. Phys. Lett. 74, 2084 (1999)CrossRefADSGoogle Scholar
  20. 20.
    C.Z. Li, H.X. He, N.J. Tao, Appl. Phys. Lett. 77, 3995 (2000)CrossRefADSGoogle Scholar
  21. 21.
    J. Li, Y. Yamada, K. Murakoshi, Y. Nakato, Chem. Commun. 2170 (2001)Google Scholar
  22. 22.
    Y.V. Kervennic, H.S.J. van der Zant, A.F. Morpurgo, L. Gurevich, L.P. Kouvenoven, Appl. Phys. Lett. 80, 321 (2002)CrossRefADSGoogle Scholar
  23. 23.
    S. Boussaad, N.J. Tao, Appl. Phys. Lett. 80, 2398 (2002)CrossRefADSGoogle Scholar
  24. 24.
    J. Li, T. Kanzaki, K. Murakoshi, Y. Nakato, Appl. Phys. Lett. 81, 123 (2002)CrossRefADSGoogle Scholar
  25. 25.
    Y. Kashimura, H. Nakashima, K. Furukawa, K. Torimitsu, Thin Solid Films 438, 317 (2003)CrossRefGoogle Scholar
  26. 26.
    M.M. Deshmukh, A.L. Prieto, Q. Gu, H. Park, Nano Lett. 3, 1383 (2003)CrossRefGoogle Scholar
  27. 27.
    L.H. Yu, D. Natelson, Appl. Phys. Lett. 82, 2332 (2003)CrossRefADSGoogle Scholar
  28. 28.
    F. Elhoussine, A. Encinas, S. Matefi-Tempfli, L. Piraux, J. Appl. Phys. 93, 8567 (2003)CrossRefADSGoogle Scholar
  29. 29.
    Y.V. Kervennic, D. Vanmaekelbergh, L.P. Kouwenhoven, H.S.J. van der Zant, Appl. Phys. Lett. 83, 3782 (2003)CrossRefADSGoogle Scholar
  30. 30.
    F.Q. Xie, L. Nittler, C. Obermair, T. Schimmel, Phys. Rev. Lett. 93, 128303-1 (2004)Google Scholar
  31. 31.
    J. Xiang, B. Liu, S.T. Wu, B. Ren, F.Z. Yang, B.W. Mao, Y.L. Chow, Z.Q. Tian, Angew. Chem. Int. Edit. 44, 1265 (2005)CrossRefGoogle Scholar
  32. 32.
    Q. Qing, F. Chen, P. Li, W. Tang, Z. Wu, Z. Liu, Angew. Chem. Int. Edit. 44, 7771 (2005)CrossRefGoogle Scholar
  33. 33.
    U. Landman, Proc. Nat. Acad. Sci. 102, 6671 (2005)CrossRefADSGoogle Scholar
  34. 34.
    B. Xu, H. He, S. Boussaad, N.J. Tao, Electrochim. Acta 48, 3085 (2003)CrossRefGoogle Scholar
  35. 35.
    N.J. Tao, Nature Nanotechnol. 1, 173 (2006)Google Scholar
  36. 36.
    S. Kronholz, S. Karthäuser, A. van der Hart, T. Wandlowski, R. Waser, Microelectron. J. 37, 591 (2006)CrossRefGoogle Scholar
  37. 37.
    G. Meszaros, T. Wandlowski, Rev. Sci. Instrum. (2007), in preparationGoogle Scholar
  38. 38.
    T. Wandlowski, K. Ataka, S. Pronkin, D. Diesing, Electrochim. Acta 49, 1233 (2004)CrossRefGoogle Scholar
  39. 39.
    M.A. Schneeweiss, D.M. Kolb, Phys. Stat. Solidi A 173, 51 (1999)CrossRefADSGoogle Scholar
  40. 40.
    T. Wandlowski, unpublishedGoogle Scholar
  41. 41.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods – Fundamentals and Applications (Wiley, New Jersey, 2001)Google Scholar
  42. 42.
    G. Rubio, N. Agrait, S. Viera, Phys. Rev. Lett. 76, 2302 (1996)CrossRefADSGoogle Scholar
  43. 43.
    C.Z. Li, A. Bogozi, W. Huang, N.J. Tao, Nanotechnology 10, 221 (1999)CrossRefADSGoogle Scholar
  44. 44.
    L. Olesen, E. Lengsgaard, I. Stensgaard, F. Besenbacher, J. Schiotz, R. Stolze, K.W. Jacobsen, J.K. Norskov, Phys. Rev. Lett. 72, 2251 (1994)CrossRefADSGoogle Scholar
  45. 45.
    J.L. Costa-Krämer, N. Garcia, P. Garcia-Mochales, P.A. Serena, Surf. Sci. 342, L1144 (1995)CrossRefGoogle Scholar
  46. 46.
    S. Boussaad, B.Q. Xu, L.A. Nagahara, I. Amlani, W. Schmickler, R. Tsui, N.J. Tao, J. Chem. Phys. 118, 889 (2003)CrossRefGoogle Scholar
  47. 47.
    G. Nagy, T. Wandlowski, Langmuir 19, 10271 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • G. Mészáros
    • 1
  • S. Kronholz
    • 2
  • S. Karthäuser
    • 2
  • D. Mayer
    • 1
  • T. Wandlowski
    • 1
  1. 1.Institute of Bio- and Nanosystems IBNResearch Center Jülich GmbHJülichGermany
  2. 2.Institute of Solid State Physics and CNI – Center of Nanoelectronic Systems for Information TechnologyResearch Center Jülich GmbHJülichGermany

Personalised recommendations