Applied Physics A

, Volume 87, Issue 4, pp 773–780 | Cite as

Porous silicon templates for electrodeposition of nanostructures

  • S. Aravamudhan
  • K. Luongo
  • P. Poddar
  • H. Srikanth
  • S. Bhansali


We report the fabrication and characterization of porous silicon templates for electrodeposition of high aspect ratio one-dimensional metallic nanostructures (nanowires/nanoparticles) in them. Even though nanostructures/nanowires in the past have been fabricated in alumina, polymer or silica templates, the advantages of this approach are the possibility for seamless integration of nanostructures with other silicon components, and silicon based sensors because of better physical and electrical interconnection between the nanostructure and the silicon substrate. In this work, fabrication and characterization of nanowires/nanostructures such as single-segment Ni–Fe and Au and two-segment Ni–Fe/Au electrodeposited in the porous silicon template are presented. The templates with ordered and controlled nanometer-sized pores, 40 nm and 290 nm in diameter, were created through porous Si etching. The morphology, composition and structural characteristics of the template and of the single-segment Ni–Fe and Au and two-segment Ni–Fe/Au nanostructures of diameter 275±25 nm, length up to 100 μm and pitch of 1 μm were analyzed using scanning electron microscopy and X-ray diffraction techniques. The micrographs confirm that the plating parameters have a strong influence on morphology and composition of the structures. Further, the Ni–Fe images show the formation of both vertical and branched nanowires along with nanoparticles, from breakage/discontinuous growth of nanowires. Ni–Fe nanostructures were further analyzed for temperature-dependent magnetization and magnetization vs. magnetic field measurements using a commercial physical property measurement system. They reveal no magnetic anisotropy of the nanostructures probably due to a balance between ‘reduced’ shape anisotropy from branched and rough pore surfaces and magnetocrystalline anisotropy.


Porous Silicon Magnetic Anisotropy Magnetocrystalline Anisotropy Metallic Nanostructures Nickel Silicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999)CrossRefADSGoogle Scholar
  2. 2.
    F. Patolsky, C.M. Lieber, Mater. Today 20, 20 (2005)CrossRefGoogle Scholar
  3. 3.
    D.H. Reich, M. Tanase, A. Hultgren, L.A. Bauer, C.S. Chen, G.J. Meyer, J. Appl. Phys. 93, 7275 (2003)CrossRefADSGoogle Scholar
  4. 4.
    I. Safarik, M. Safarikova, J. Chromatogr. 722, 33 (1999)Google Scholar
  5. 5.
    E.C. Walter, R.M. Penner, H. Liu, K.H. Ng, M.P. Zach, F. Favier, Surf. Interface Anal. 34, 409 (2002)Google Scholar
  6. 6.
    N.I. Kovtyukhova, T.E. Mallouk, Chem. Eur. J. 8, 4355 (2002)CrossRefGoogle Scholar
  7. 7.
    E.C. Walter, F. Favier, R.M. Penner, Anal. Chem. 74, 1546 (2002)CrossRefGoogle Scholar
  8. 8.
    C.Z. Li, H. Sha, N.J. Tao, Phys. Rev. B 58, 6775 (1998)CrossRefADSGoogle Scholar
  9. 9.
    L.A. Bauer, D.H. Reich, G.J. Meyer, Langmuir 19, 7043 (2003)CrossRefGoogle Scholar
  10. 10.
    C.D. Keating, M.J. Natan, Adv. Mater. 15, 451 (2003)CrossRefGoogle Scholar
  11. 11.
    C.R. Martin, Science 266, 1961 (1994)CrossRefADSGoogle Scholar
  12. 12.
    J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)CrossRefGoogle Scholar
  13. 13.
    G.L. Hornyak, C.J. Patrissi, C.R. Martin, J. Phys. Chem. B 101, 1548 (1997)CrossRefGoogle Scholar
  14. 14.
    X.Y. Zhang, L.D. Zhang, Y. Lei, L.X. Zhao, Y.Q. Mao, J. Mater. Chem. 11, 1732 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Ji, C. Searson, Appl. Phys. Lett. 81, 4437 (2000)CrossRefADSGoogle Scholar
  16. 16.
    C. Schönenberger, B.M.I. van der Zande, L.G.J. Fokkink, J. Phys. Chem. 101, 5497 (1997)Google Scholar
  17. 17.
    T.M. Whitney, J.S. Hang, P.C. Searson, C.L. Chien, Science 261, 1316 (1993)CrossRefADSGoogle Scholar
  18. 18.
    K.B. Lee, S.M. Lee, J. Cheon, Adv. Mater. 13, 517 (2001)CrossRefGoogle Scholar
  19. 19.
    H. Föll, M. Christophersen, J. Carstensen, G. Hasse, Mater. Sci. Eng. R 39, 93 (2002)CrossRefGoogle Scholar
  20. 20.
    V. Lehmann, U. Gosele, Appl. Phys. Lett. 58, 856 (1991)CrossRefADSGoogle Scholar
  21. 21.
    T.E. Bell, P.T.J. Gennissen, D. DeMunter, M. Kuhl, J. Micromech. Microeng. 6, 361 (1996)CrossRefADSGoogle Scholar
  22. 22.
    L. Seals, J.L. Gole, L.A. Tse, P.J. Hesketh, J. Appl. Phys. 91, 2519 (2002)CrossRefADSGoogle Scholar
  23. 23.
    O. Rabin, P.R. Herz, Y.M. Lin, A.I. Akinwade, S.B. Cronin, M.S. Dresselhaus, Adv. Funct. Mater. 13, 631 (2003)CrossRefGoogle Scholar
  24. 24.
    J.J. Boote, S.D. Evans, Nanotechnology 16, 1500 (2005)CrossRefGoogle Scholar
  25. 25.
    Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)CrossRefADSGoogle Scholar
  26. 26.
    J. Xu, A.J. Steckl, Appl. Phys. Lett. 65, 2081 (1994)CrossRefADSGoogle Scholar
  27. 27.
    S. Aravamudhan, S. Kedia, S. Bhansali, in 207th Meet. Electrochemical Society, 2005Google Scholar
  28. 28.
    M. Jeske, J.W. Schultze, M. Thonissen, H. Munder, Thin Solid Films 255, 63 (1995)CrossRefADSGoogle Scholar
  29. 29.
    S. Gusev, N. Korotkova, D. Rozenstein, A. Freerman, J. Appl. Phys. 76, 6671 (1994)CrossRefADSGoogle Scholar
  30. 30.
    K. Rumpf, P. Grantizer, H. Krenn, Mater. Res. Soc. Symp. Proc. 877, 7.2 (2005)Google Scholar
  31. 31.
    P. Grantizer, K. Rumpf, S. Surnev, H. Krenn, J. Magn. Magn. Mater. 290, 735 (2005)CrossRefADSGoogle Scholar
  32. 32.
    S.A. Nikitchuk, M.V. Lokhanin, A.V. Prokanikov, N.A. Rud, V.B. Svetovol, Technol. Phys. Lett. 31, 513 (2005)CrossRefADSGoogle Scholar
  33. 33.
    M.J.J. Theunissen, J. Electrochem. Soc. 119, 351 (1972)CrossRefGoogle Scholar
  34. 34.
    V. Lehmann, H. Föll, J. Electrochem. Soc. 197, 653 (1990)CrossRefGoogle Scholar
  35. 35.
    T. Osaka, K. Ogasawara, S. Nakahara, J. Electrochem. Soc. 144, 3226 (1997)CrossRefGoogle Scholar
  36. 36.
    M. Christophersen, J. Carstensen, S. Rönnebeck, C. Jáger, W. Jáger, H. Föll, J. Electrochem. Soc. 148, 267 (2001)CrossRefGoogle Scholar
  37. 37.
    D.H. Reich, M. Tanase, A. Hultgren, L.A. Bauer, C.S. Chen, G.J. Meyer, J. Appl. Phys. 93, 7554 (2003)CrossRefADSGoogle Scholar
  38. 38.
    J.W. Choi, C.H. Ahn, S. Bhansali, H.T. Henderson, Sens. Actuators B 68, 34 (2000)CrossRefGoogle Scholar
  39. 39.
    N.A. Frey, R. Hajndl, S. Srinath, H. Srikanth, unpublishedGoogle Scholar
  40. 40.
    N.A. Frey, Master’s thesis, University of South Florida (2004)Google Scholar
  41. 41.
    H.R. Khan, K. Petrikowski, J. Magn. Magn. Mater. 215–216, 526 (2000)CrossRefGoogle Scholar
  42. 42.
    L. Sun, Y. Hao, C.L. Chien, P.C. Searson, IBM J. Res. Dev. 49, 79 (2005)CrossRefGoogle Scholar
  43. 43.
    Q. Zhan, Z. Chen, D. Xue, F. Li, H. Kunkel, X. Zhou, R. Roshko, G. Williams, Phys. Rev. B 66, 134436 (2002)CrossRefADSGoogle Scholar
  44. 44.
    R. Metzger, V.V. Konovalov, M. Sun, G. Zangari, B. Xu, M. Benakli, W.D. Doyle, IEEE Trans. Magn. 36, 30 (2000)CrossRefADSGoogle Scholar
  45. 45.
    J. Mallet, K. Yu-Zhang, C.L. Chien, T.S. Eagleton, P.C. Searson, Appl. Phys. Lett. 84, 3900 (2004)CrossRefADSGoogle Scholar
  46. 46.
    S. Ge, C. Li, X. Ma, W. Li, L. Xi, C.X. Li, J. Appl. Phys. 90, 509 (2001)CrossRefADSGoogle Scholar
  47. 47.
    D.J. Sellmyer, M. Zheng, R. Shomski, J. Phys.: Condens. Matter 13, 433 (2001)CrossRefADSGoogle Scholar
  48. 48.
    A. Kumar, S. Fähler, H. Schlörb, K. Leisiner, L. Schultz, Phys. Rev. B 73, 064421 (2006)CrossRefADSGoogle Scholar
  49. 49.
    M. Vázquez, K. Pirota, J. Torrejón, D. Navas, M. Hernández-Vëlez, J. Magn. Magn. Mater. 294, 174 (2005)CrossRefADSGoogle Scholar
  50. 50.
    S. Chikazumi, Physics of Magnetism (Wiley, New York, 1964)Google Scholar
  51. 51.
    X.P. Li, Z.J. Zhao, H.L. Seet, W.M. Heng, T.B. Oh, J.Y. Lee, J. Appl. Phys. 94, 6655 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. Aravamudhan
    • 1
  • K. Luongo
    • 1
  • P. Poddar
    • 2
  • H. Srikanth
    • 2
  • S. Bhansali
    • 1
  1. 1.Department of Electrical Engineering, Nanomaterials and Nanomanufacturing Research CenterUniversity of South FloridaTampaUSA
  2. 2.Materials Physics Laboratory, Department of PhysicsUniversity of South FloridaTampaUSA

Personalised recommendations