Applied Physics A

, Volume 87, Issue 2, pp 209–216 | Cite as

Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation

  • V.J. Logeeswaran
  • A.N. Stameroff
  • M. Saif Islam
  • W. Wu
  • A.M. Bratkovsky
  • P.J. Kuekes
  • S.Y. Wang
  • R.S. Williams


We introduce a modulation mechanism for negative index materials (NIM) in the GHz frequency range by means of photoconductive coupling. This leads the way to a monolithically integrated modulable NIM achieved by conventional microfabrication techniques. The photosensitive material is deposited in the gap of the split ring resonator (SRR) structure and the response in terms of S-parameters is simulated using a high frequency structure simulator (HFSSTM) program. Only a single SRR particle is simulated to demonstrate total suppression of resonance amplitude and without any loss of generality the concept is applicable to a NIM comprising of both negative permeability and negative permittivity. This simple modulation of refractive indices can lead to novel optical device developments with the potential to dramatically improve the performance of existing phased array antennas, optical beam-forming networks, antenna remoting and transportation of RF power through fiber.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)CrossRefADSGoogle Scholar
  2. 2.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)CrossRefADSGoogle Scholar
  3. 3.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)CrossRefADSGoogle Scholar
  4. 4.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2057 (1999)CrossRefGoogle Scholar
  5. 5.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)CrossRefADSGoogle Scholar
  6. 6.
    T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494 (2004)CrossRefADSGoogle Scholar
  7. 7.
    C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005)CrossRefADSGoogle Scholar
  8. 8.
    H.O. Moser, B.D.F. Casse, O. Wilhelmi, B.T. Saw, Phys. Rev. Lett. 94, 063901 (2005)CrossRefADSGoogle Scholar
  9. 9.
    S. Zhang, W.J. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)CrossRefADSGoogle Scholar
  10. 10.
    V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)CrossRefADSGoogle Scholar
  11. 11.
    T.F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R.S. Penciu, M. Kafesaki, E.N. Economou, T. Koschny, C.M. Soukoulis, Appl. Phys. Lett. 89, 084103 (2006)CrossRefADSGoogle Scholar
  12. 12.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  13. 13.
    N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)CrossRefADSGoogle Scholar
  14. 14.
    A. Alù, N. Engheta, IEEE Trans. Antennas Propag. 51, 2558 (2003)CrossRefADSGoogle Scholar
  15. 15.
    S.A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005)CrossRefADSGoogle Scholar
  16. 16.
    N. Engheta, R.W. Ziolkowski, IEEE Trans. Microw. Theory Technol. 53, 1535 (2005)CrossRefGoogle Scholar
  17. 17.
    C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, Hoboken, New Jersey, 2005)Google Scholar
  18. 18.
    H.S. Sommers, W.B. Teutsch, Proc. IEEE 52, 144 (1964)CrossRefGoogle Scholar
  19. 19.
    R.M. Arnold, F.J. Rosenbaum, IEEE Trans. Electron. Dev. 18, (1971)Google Scholar
  20. 20.
    K.E. Mortenson, A.L. Armstrong, J.M. Borrego, J.F. White, Proc. IEEE 59, 1191 (1971)Google Scholar
  21. 21.
    D.H. Auston, Appl. Phys. Lett. 26, 3 (1975)CrossRefGoogle Scholar
  22. 22.
    A.M. Johnson, D.H. Auston, IEEE J. Quantum Electron. QE-11, 6 (1975)Google Scholar
  23. 23.
    A. Djemoun, A De Lustrac, F. Gadof, E. Akmansoy, In: Epfl. Latsis NIM Symp. (2005)Google Scholar
  24. 24.
    S.W. Lee, Y. Kuga, A. Ishimaru, Prog. Electromagn. Res. PIER 51, 219 (2005)CrossRefGoogle Scholar
  25. 25.
    K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C.M. Soukoulis, E. Ozbay, New J. Phys. 7, 168 (2005)CrossRefADSGoogle Scholar
  26. 26.
    W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, Phys. Rev. Lett. 96, 107401 (2006)CrossRefADSGoogle Scholar
  27. 27.
    D.R. Smith, J. Gollub, J.J. Mock, W.J. Padilla, D. Schurig, J. Appl. Phys. 100, 024507 (2006)CrossRefADSGoogle Scholar
  28. 28.
    P. Gay Balmaz, O.J.F. Martin, J. Appl. Phys. 92, 2929 (2002)CrossRefADSGoogle Scholar
  29. 29.
    K. Aydin, K. Guven, N. Katsarakis, C.M. Soukoulis, E. Ozbay, Opt. Express 12, 94 (2004)CrossRefGoogle Scholar
  30. 30.
    X. Chen, B.I. Wu, J.A. Kong, T.M. Grzegorczyk, Phys. Rev. E 71, 046610 (2005)CrossRefADSGoogle Scholar
  31. 31.
    D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)CrossRefADSGoogle Scholar
  32. 32.
    D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005)CrossRefADSGoogle Scholar
  33. 33.
    C.H. Lee, IEEE Trans. Microw. Theory Technol. 38, 596 (1990)CrossRefADSGoogle Scholar
  34. 34.
    M. Kafesaki, T. Koschny, R.S. Penciu, T.F. Gundogdu, E.N. Economou, C.M. Soukoulis, J. Opt. A Pure Appl. Opt. 7, 12 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • V.J. Logeeswaran
    • 1
  • A.N. Stameroff
    • 1
  • M. Saif Islam
    • 1
  • W. Wu
    • 2
  • A.M. Bratkovsky
    • 2
  • P.J. Kuekes
    • 2
  • S.Y. Wang
    • 2
  • R.S. Williams
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Quantum Science Research GroupHewlett Packard LaboratoriesPalo AltoUSA

Personalised recommendations