Applied Physics A

, Volume 87, Issue 4, pp 611–613 | Cite as

104 nm period grating fabrication in fused silica by immersion two-beam interferometric laser induced backside wet etching technique

Rapid communication

Abstract

A substantial extension of the method of two-beam interferometric laser induced backside wet etching (TWIN-LIBWE), the immersion TWIN-LIBWE, is used to fabricate fused silica gratings with a 104 nm period. The spatially filtered fourth harmonic of Nd:YAG laser (λ=266 nm, τFWHM=8 ns) pulses were split into two parts which then interfered at the backside of the fused silica target in contact with a liquid absorber (naphthalene methyl methacrylate saturated solution with a concentration of 1.85 mol/dm3). The hypotenuse of a rectangular fused silica prism is attached to the fused silica target with the use of distilled water as the immersion liquid. On steering the beams through the sides of the prisms, the angle between the two laser beams has been substantially increased. The resulting period of 104 nm is the minimal grating constant achievable under such experimental conditions and, to our knowledge, the smallest laser generated grating period in fused silica at present.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wang, H. Niino, A. Yabe, Appl. Phys. A 68, 111 (1999)CrossRefADSGoogle Scholar
  2. 2.
    H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, R. Kurosaki, Appl. Surf. Sci. 252, 4387 (2006)CrossRefADSGoogle Scholar
  3. 3.
    R. Böhme, A. Braun, K. Zimmer, Appl. Surf. Sci. 186, 276 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Kopitkovas, T. Lippert, C. David, A. Wokaun, J. Gobrecht, Microelectron. Eng. 6768, 438 (2003)Google Scholar
  5. 5.
    G. Kopitkovas, T. Lippert, C. David, A. Wokaun, J. Gobrecht, Thin Solid Films 453454, 31 (2004)Google Scholar
  6. 6.
    K. Zimmer, R. Böhme, D. Ruthe, B. Rauschenbach, Appl. Phys. A 84, 455 (2006)CrossRefADSGoogle Scholar
  7. 7.
    C. Vass, B. Hopp, T. Smausz, F. Ignácz, Thin Solid Films 453454, 121 (2004)Google Scholar
  8. 8.
    C. Vass, T. Smausz, B. Hopp, J. Phys. D Appl. Phys. 37, 2449 (2004)CrossRefADSGoogle Scholar
  9. 9.
    X. Ding, Y. Kawaguchi, H. Niino, A. Yabe, Appl. Phys. A 75, 641 (2002)CrossRefADSGoogle Scholar
  10. 10.
    R. Böhme, D. Spemann, K. Zimmer, Thin Solid Films 453454, 127 (2004)Google Scholar
  11. 11.
    X. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, H. Niino, J. Photochem. Photobiol. A 166, 129 (2004)CrossRefGoogle Scholar
  12. 12.
    K. Zimmer, R. Böhme, A. Braun, B. Rauschenbach, F. Bigl, Appl. Phys. A 74, 453 (2002)CrossRefADSGoogle Scholar
  13. 13.
    R. Böhme, J. Zajadacz, K. Zimmer, B. Rauschenbach, Appl. Phys. A 80, 433 (2005)CrossRefADSGoogle Scholar
  14. 14.
    C. Vass, K. Osvay, M. Csete, B. Hopp, Appl. Surf. Sci. (2007), DOI: 10.1016/j.apsusc.2007.02.087Google Scholar
  15. 15.
    C. Vass, K. Osvay, B. Hopp, Opt. Express 14, 8354 (2006)CrossRefADSGoogle Scholar
  16. 16.
    P. Schiebener, J. Staub, J.M.H. Levelt Sengers, J.S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (2006)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  2. 2.Research Group on Laser Physics of the Hungarian Academy of SciencesSzegedHungary

Personalised recommendations