Applied Physics A

, Volume 87, Issue 2, pp 161–165

Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium

Article

Abstract

One of the most important modern problems in modern electromagnetics is a design and study of negative index metamaterials that may enable sub-wavelength imaging at optical frequencies. Plasmonic periodic metal-dielectric nanostructures present one interesting possibility for both 2D and 3D negative index medium (NIM) systems. The displacement current near plasmonic resonance excitations may produce both negative permittivity and negative permeability (most difficult) in a NIM with e.g. “fishnet” metal-dielectric composite type structure. One obvious problem with a metallic NIM is that the response is strongly dispersive and lossy. Both of these effects are detrimental to sub-wavelength imaging. One way of mitigating losses is to use a gain medium. We address the question of sub-wavelength resolution in the fishnet NIM with and without gain medium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.I. Mandelshtam, Lectures on Optics, Relativity, and Quantum Mechanics (Nauka, Moscow, 1972), p. 389Google Scholar
  2. 2.
    R.A. Silin, Usp. Fiz. Nauk. 175, 562 (2006)CrossRefGoogle Scholar
  3. 3.
    R.A. Silin, V.P. Sazonov, Delay Systems (Radio, Moscow, 1966)Google Scholar
  4. 4.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, Phys. Rev. B 58, 10096(R) (1998)CrossRefADSGoogle Scholar
  5. 5.
    M. Notomi, Phys. Rev. B 62, 10696 (2000)CrossRefADSGoogle Scholar
  6. 6.
    V.E. Pafomov, Zh. Eksp. Teor. Fiz. 36, 1853 (1959)Google Scholar
  7. 7.
    V.G. Veselago, Usp. Fiz. Nauk. 92, 517 (1967)Google Scholar
  8. 8.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)CrossRefADSGoogle Scholar
  9. 9.
    J.B. Pendry, J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999)CrossRefGoogle Scholar
  10. 10.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)CrossRefADSGoogle Scholar
  11. 11.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  12. 12.
    R. Merlin, Appl. Phys. Lett. 84, 1290 (2004) [and Appl. Phys. Lett. 85, 2144 (2004)]CrossRefADSGoogle Scholar
  13. 13.
    F.D.M. Haldane, cond-mat/0206420Google Scholar
  14. 14.
    N. Garcia, M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002)CrossRefADSGoogle Scholar
  15. 15.
    D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry, Appl. Phys. Lett. 82, 1506 (2003)CrossRefADSGoogle Scholar
  16. 16.
    A.M. Bratkovsky, A. Cano, A.P. Levanyuk, Appl. Phys. Lett. 87, 103507 (2005)CrossRefADSGoogle Scholar
  17. 17.
    A.N. Lagarkov, V.N. Kissel, Phys. Rev. Lett. 92, 077401 (2004)CrossRefADSGoogle Scholar
  18. 18.
    N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)CrossRefADSGoogle Scholar
  19. 19.
    S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis, Science 306, 1351 (2004)CrossRefADSGoogle Scholar
  20. 20.
    S. Zhang, W. Fan, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.M. Osgood, Opt. Express 13, 4922 (2005)CrossRefADSGoogle Scholar
  21. 21.
    S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)CrossRefADSGoogle Scholar
  22. 22.
    V.M. Shalaev, W. Cai, U. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)CrossRefADSGoogle Scholar
  23. 23.
    V.P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A.K. Sarychev, A.V. Kildishev, G. Klimeck, V.M. Shalaev, Laser Phys. Lett. 3, 49 (2006)CrossRefGoogle Scholar
  24. 24.
    A. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nature 438, 335 (2005)CrossRefADSGoogle Scholar
  25. 25.
    G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Science 312, 892 (2006)CrossRefADSGoogle Scholar
  26. 26.
    J.B. Pendry, S.A. Ramakrishna, Physica B 338, 329 (2003)CrossRefADSGoogle Scholar
  27. 27.
    W.L. Barnes, A. Dereaux, T.W. Ebbesen, Nature 424, 824 (2003)CrossRefADSGoogle Scholar
  28. 28.
    S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Nature 440, 508 (2006)CrossRefADSGoogle Scholar
  29. 29.
    T. Nikolajsen, K. Leosson, S.I. Bozhevonyi, Appl. Phys. Lett. 85, 5833 (2004)CrossRefADSGoogle Scholar
  30. 30.
    I.I. Smolyaninov, J. Elliott, A.V. Zayats, C.C. Davis, Phys. Rev. Lett. 94, 057401 (2005)CrossRefADSGoogle Scholar
  31. 31.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)CrossRefADSGoogle Scholar
  32. 32.
    H. Shin, S. Fan, Phys. Rev. Lett. 96, 073907 (2006)CrossRefADSGoogle Scholar
  33. 33.
    A. Taflove, S.C. Hagness, Computational Electrodynamics (Artech House, Boston, 2000)MATHGoogle Scholar
  34. 34.
    W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y.R. Shen, A.M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S.-Y. Wang, R.S. Williams, cond-mat/0610352 (2006)Google Scholar
  35. 35.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations