Applied Physics A

, Volume 87, Issue 3, pp 505–509 | Cite as

Surface and interface electronic properties of AlGaN(0001) epitaxial layers

  • A. Rizzi
  • M. Kocan
  • J. Malindretos
  • A. Schildknecht
  • N. Teofilov
  • K. Thonke
  • R. Sauer
Article

Abstract

AlGaN layers with Al content varying over the whole range of compositions were grown by molecular beam epitaxy (MBE) on n-6H-SiC substrates. The band gap energy is obtained from the vanishing of Fabry–Pérot oscillations in a fit to optical reflection spectra near the band gap absorption edge. The surface potential was determined by in-situ X-ray photoemission spectroscopy (XPS) and is found to increase as a function of the Al content from (0.5±0.1) eV to (1.3±0.1) eV, from GaN to AlN. A Si3N4 thin passivation layer was formed in-situ onto a 2DEG AlGaN/GaN structure. The mechanism underlying the passivation of high electron mobility transistor (HEMT) structures is suggested to be based on the formation of interface states, which keep the Fermi level fixed at a position close to that of the free AlGaN surface.

Keywords

Molecular Beam Epitaxy Valence Band Maximum AlGaN Layer Surface Fermi Level Silicon Nitride Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, IEEE Electron. Dev. Lett. 26, 781 (2005)Google Scholar
  2. 2.
    T. Palacios, C.S. Suh, A. Chakraborty, S. Keller, S.P. DenBaars, U.K. Mishra, IEEE Electron. Dev. Lett. 27, 428 (2006)Google Scholar
  3. 3.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R1024 (1997)CrossRefGoogle Scholar
  4. 4.
    O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L.F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002)CrossRefADSGoogle Scholar
  5. 5.
    J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Appl. Phys. Lett. 77, 250 (2000)CrossRefADSGoogle Scholar
  6. 6.
    I.P. Smorchkova, C.R. Elsass, J.P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S.P. Den-Baars, J.S. Speck, U.K. Mishra, J. Appl. Phys. 86, 4520 (1999)CrossRefADSGoogle Scholar
  7. 7.
    B. Jogai, J. Appl. Phys. 93, 1631 (2003)CrossRefADSGoogle Scholar
  8. 8.
    G. Koley, M.G. Spencer, Appl. Phys. Lett. 86, 042107 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Y. Dong, R.M. Feenstra, J.E. Northrup, Appl. Phys. Lett. 89, 171920 (2006)CrossRefADSGoogle Scholar
  10. 10.
    D. Segev, C.G. Van De Walle, Europhys. Lett. 76, 305 (2006)CrossRefADSGoogle Scholar
  11. 11.
    M. Kocan, A. Rizzi, H. Lüth, S. Keller, U.K. Mishra, Phys. Stat. Solidi B 234, 773 (2002)CrossRefADSGoogle Scholar
  12. 12.
    C.H.F. Peden, J.W. Rogers, N.D. Shin, K.B. Kidd, K.L. Tsang, Phys. Rev. B 47, 15622 (1993)CrossRefADSGoogle Scholar
  13. 13.
    L. Chen, B.J. Skromme, R.F. Dalmau, R. Schlesser, Z. Sitar, C. Chen, W. Sun, J. Yang, M.A. Khan, M.L. Nakarmi, J.Y. Lin, H.-X. Jiang, Appl. Phys. Lett. 85, 1 (2004)CrossRefGoogle Scholar
  14. 14.
    E. Silveira, J.A. Freitas Jr., O.J. Glembocki, G.A. Slack, L.J. Schowalter, Phys. Rev. B 71, 041201(R) (2005)Google Scholar
  15. 15.
    G.M. Prinz, A. Ladenburger, M. Schirra, M. Feneberg, K. Thonke, R. Sauer, Y. Taniyasu, M. Kasu, T. Makimoto, J. Appl. Phys. 101, 023511 (2007)CrossRefADSGoogle Scholar
  16. 16.
    L. Ohlidal, K. Navratil, F. Lukes, J. Opt. Soc. Am. 61, 1630 (1971)CrossRefADSGoogle Scholar
  17. 17.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996), p. 258MATHGoogle Scholar
  18. 18.
    C.C. Kim, J.W. Garland, H. Abad, P.M. Raccah, Phys. Rev. B 45, 11749 (1992)CrossRefADSGoogle Scholar
  19. 19.
    W.J. Choyke, E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), p. 587Google Scholar
  20. 20.
    A. Rizzi, H. Lüth, Nuovo Cim. D 20, 1039 (1998)Google Scholar
  21. 21.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Mater. Res. Soc. Symp. Proc. 449, 923 (1997)Google Scholar
  22. 22.
    K. Lawniczak-Jablonska, T. Suski, I. Gorczyca, N.E. Christensen, K.E. Attenkofer, R.C.C. Perera, E.M. Gullikson, J.H. Underwood, D.L. Ederer, Z. Liliental-Weber, Phys. Rev. B 61, 16623 (2000)CrossRefADSGoogle Scholar
  23. 23.
    R. Vetury, N.Q. Zhang, S. Keller, U.K. Mishra, IEEE Trans. Electron. Dev. 48, 560 (2001)CrossRefADSGoogle Scholar
  24. 24.
    W. Wang, J. Derluyn, M. Germain, M. Leys, S. Degroote, D. Schreurs, G. Borghs, Japan. J. Appl. Phys. 45, L224 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Rizzi
    • 1
  • M. Kocan
    • 1
  • J. Malindretos
    • 1
  • A. Schildknecht
    • 2
  • N. Teofilov
    • 2
  • K. Thonke
    • 2
  • R. Sauer
    • 2
  1. 1.IV. Physikalisches InstitutGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Abteilung HalbleiterphysikUniversität UlmUlmGermany

Personalised recommendations