Applied Physics A

, Volume 87, Issue 3, pp 545–558

Hot electron injector Gunn diode for advanced driver assistance systems

  • A. Förster
  • M.I. Lepsa
  • D. Freundt
  • J. Stock
  • S. Montanari
Article

Abstract

This paper reviews the main aspects of the design, fabrication and characterization of GaAs Gunn diodes intended to be used in advanced driver assistance systems. The corresponding Gunn diode based oscillators operate at the microwave frequency of 77 GHz and deliver an output power up to 19.2 dBm (83.2 mW). To fulfill the high demands of the automotive industry, temperature stability and a high grade of frequency purity, the Gunn diode structure includes a hot electron injector. This is based on the heteroepitaxy of a graded gap AlxGa1-xAs layer and an adjacent thin highly doped GaAs layer. The hot electron injector properties are investigated using dc and rf electrical measurements, including the temperature influence as well. Specific production related data of the cavity oscillators using our Gunn diodes are presented. New alternatives, such as the resonant tunneling emitter as a hot electron injector and the Gunn diode based MMIC as oscillator, are introduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.K. Ridley, T.B. Watkins, Proc. Phys. Soc. 78, 293 (1961)CrossRefGoogle Scholar
  2. 2.
    C. Hilsum, Proc. IRE 50, 185 (1962)CrossRefGoogle Scholar
  3. 3.
    J.B. Gunn, Solid State Commun. 1, 88 (1963)CrossRefADSGoogle Scholar
  4. 4.
    J.B. Gunn, IBM J. Res. Dev. 8, 141 (1964)CrossRefGoogle Scholar
  5. 5.
    H. Krömer, Proc. IEEE 52, 1736 (1964)Google Scholar
  6. 6.
    J.B. Gunn, In: Instabilities of Current and of Potential Distribution in GaAs and InP, Proc. Plasma Effects in Solids (Dunod, Paris, 1965) pp. 199–207Google Scholar
  7. 7.
    A.R. Hutson, A. Jayaraman, A.G. Chynoweth, A.S. Coriell, W.L. Feldman, Phys. Rev. Lett. 14, 639 (1965)CrossRefADSGoogle Scholar
  8. 8.
    P.N. Butcher, Phys. Lett. 19, 546 (1965)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    J.A. Copeland, IEEE Trans. Electron. Dev. ED-13, 189 (1966)Google Scholar
  10. 10.
    J.G. Ruch, G.S. Kino, Appl. Phys. Lett. 10, 40 (1967)CrossRefADSGoogle Scholar
  11. 11.
    B.W. Hakki, J. Appl. Phys. 38, 808 (1967)CrossRefADSGoogle Scholar
  12. 12.
    J. Carroll, Hot Electron Microwave Generators (Edward Arnold, London, 1970)Google Scholar
  13. 13.
    H.L. Hartnagel, Gunn-Effect Logic Devices (American Elsevier, New york, 1971)Google Scholar
  14. 14.
    F. Sterzer, Proc. IEEE 59, 1155 (1971)CrossRefGoogle Scholar
  15. 15.
    K. Heime, Der Fernmeldeingenieur 25, 1 (1971)Google Scholar
  16. 16.
    P. Bulman, G.S. Hobson, B. Taylor, Transferred Electron Devices (Academic, London, New York, 1972)Google Scholar
  17. 17.
    G.S. Hobson, The Gunn Effect (Clarendon Press, Oxford, 1974)Google Scholar
  18. 18.
    B. Bosch, R. Engelmann, Gunn-Effect Electronics (Wiley, New York, 1975)Google Scholar
  19. 19.
    M.E. Levinstein, M.S. Shur, Solid State Electron. 18, 983 (1975)CrossRefADSGoogle Scholar
  20. 20.
    S. Neylon, S. Dale, H. Spooner, D. Worley, N. Couch, D. Knight, J. Ondria, IEEE 1989 MTT-S Int. Microwave Symp. Digest 1, 519 (1989)Google Scholar
  21. 21.
    N.R. Couch, H. Spooner, P.H. Beton, M.J. Kelly, M.E. Lee, P.K. Rees, T.M. Kerr, IEEE Electron. Dev. Lett. 10, 288 (1989)CrossRefADSGoogle Scholar
  22. 22.
    H. Spooner, N. Couch, GEC J. Res. 7, 34 (1989)Google Scholar
  23. 23.
    J. Stock, PhD thesis, University of Aachen RWTH (2003)Google Scholar
  24. 24.
    A. Paolella, R.L. Ross, J. Ondria, Microwave J. 29, 149 (1986)Google Scholar
  25. 25.
    N.R. Couch, P.H. Beton, M.J. Kelly, T.M. Kerr, D.J. Knight, J. Ondria, Solid State Electron. 31, 613 (1988)CrossRefADSGoogle Scholar
  26. 26.
    J.M. Szubert, J. Barstow, R.B. Beall, J.J. Harris, Solid State Electron. 33, 1035 (1990)CrossRefADSGoogle Scholar
  27. 27.
    S. Hutchinson, J. Stephens, M. Carr, M.J. Kelly, Electron. Lett. 32, 851 (1996)CrossRefGoogle Scholar
  28. 28.
    H. Eisele, Solid State Electron. 32, 253 (1989)CrossRefADSGoogle Scholar
  29. 29.
    R. Kamoua, H. Eisele, G.I. Haddad, Solid State Electron. 36, 1547 (1993)CrossRefADSGoogle Scholar
  30. 30.
    S.M. Sze, Modern Semiconductor Device Physics (Wiley, New York, 1998)Google Scholar
  31. 31.
    P.H. Beton, A.P. Long, N.R. Couch, M.J. Kelly, Electron. Lett. 24, 434 (1988)CrossRefADSGoogle Scholar
  32. 32.
    E.F. Schubert, J.B. Stark, T.H. Chiu, B. Tell, Appl. Phys. Lett. 53, 293 (1988)CrossRefADSGoogle Scholar
  33. 33.
    E.F. Schubert, C.W. Tu, R.F. Kopf, J.M. Kuo, L.M. Lunardi, Appl. Phys. Lett. 54, 2592 (1989)CrossRefADSGoogle Scholar
  34. 34.
    E.F. Schubert, J. Vac. Sci. Technol. A 8, 2980 (1990)CrossRefADSGoogle Scholar
  35. 35.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience, New York, 1981)Google Scholar
  36. 36.
    S. Montanari, A. Förster, M.I. Lepsa, H. Lüth, Solid State Electron. 49, 245 (2005)CrossRefADSGoogle Scholar
  37. 37.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)CrossRefADSGoogle Scholar
  38. 38.
    D.E. McCumber, A.G. Chynoweth, IEEE Trans. Electron. Dev. ED-13, 4 (1966)Google Scholar
  39. 39.
    T. Makino, Solid State Electron. 22, 761 (1979)CrossRefADSGoogle Scholar
  40. 40.
    SILVACO International, 4071 Patrick Henry Drive, Building 1, Santa Clara, CA 95054Google Scholar
  41. 41.
    G. Hobson, Solid State Electron. 15, 1107 (1972)CrossRefADSGoogle Scholar
  42. 42.
    S. Montanari, PhD thesis, RWTH Aachen (2005)Google Scholar
  43. 43.
    M. Tong, D.G. Ballegeer, A. Ketterson, E.J. Roan, K.Y. Cheng, I. Adesida, J. Electron Mater. 21, 9 (1992)ADSGoogle Scholar
  44. 44.
    G.C. DeSalvo, W.F. Tseng, J. Comas, J. Electrochem. Soc. 139, 831 (1992)CrossRefGoogle Scholar
  45. 45.
    G. Franz, F. Rinner, J. Vac. Sci. Technol. A 17, 56 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Förster
    • 1
  • M.I. Lepsa
    • 2
  • D. Freundt
    • 3
  • J. Stock
    • 3
  • S. Montanari
    • 4
  1. 1.Aachen University of Applied SciencesJülichGermany
  2. 2.Institute of Bio- and Nanosystems (IBN-1)Research Center Jülich GmbHJülichGermany
  3. 3.Division Automotive Electronics Business Unit Driver Assistance/Long Range Radar AE-DA/ELRRobert Bosch GmbHLeonbergGermany
  4. 4.Division Automotive Electronics, Quality Management Supplier (AE/QMS1)Robert Bosch GmbHReutlingenGermany

Personalised recommendations