Applied Physics A

, 87:321

Negative index and indefinite media waveguide couplers

  • A. Degiron
  • D.R. Smith
  • J.J. Mock
  • B.J. Justice
  • J. Gollub
Article

Abstract

We study the coupling interaction between dielectric waveguides and coupling elements made from negative-refracting media. The coupling configuration consists of a length of dielectric waveguide, which terminates either directly into or near a planar layer composed of the negative-refracting medium, and is followed by a second waveguide. Radiation output from the first waveguide is refocused at the position of the second waveguide, so that the negative-refracting layer serves as a coupler between the waveguides. Because both isotropic negative-index layers and bilayers of indefinite media can recover the near-field, evanescent components of a source field distribution, the coupling between the input and output waveguides can be highly efficient – in principle providing perfect, lossless coupling. We present simulations and some initial experimental results illustrating the coupling effect, and speculate on the potential for optical fiber couplers and integrated modulators.

References

  1. 1.
    R.M. Walser, Proc. SPIE 4467, 1 (2001)CrossRefADSGoogle Scholar
  2. 2.
    D.R. Smith, W. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)CrossRefADSGoogle Scholar
  3. 3.
    V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)CrossRefADSGoogle Scholar
  4. 4.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)CrossRefADSGoogle Scholar
  5. 5.
    G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003)CrossRefADSGoogle Scholar
  6. 6.
    A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90, 137401 (2003)CrossRefADSGoogle Scholar
  7. 7.
    R.W. Ziolkowski, N. Engheta, IEEE Trans. Antennas Propag. 51, 2546 (2003)CrossRefADSGoogle Scholar
  8. 8.
    J.B. Pendry, Opt. Express 11, 639 (2003)ADSGoogle Scholar
  9. 9.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)CrossRefADSGoogle Scholar
  10. 10.
    A. Lakhtakia, M. McCall, New J. Phys. 7, 171 (2005)CrossRefGoogle Scholar
  11. 11.
    V.G. Veselago, L. Braginsky, V. Shkover, C. Hafner, J. Comput. Theor. Nanosci. 3, 189 (2006)Google Scholar
  12. 12.
    A.L. Pokrovsky, A.L. Efros, Physica B 338, 333 (2003)CrossRefADSGoogle Scholar
  13. 13.
    W.T. Lu, S. Sridhar, Opt. Express 13, 10673 (2005)CrossRefADSGoogle Scholar
  14. 14.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  15. 15.
    J.T. Shen, P.M. Platzman, Appl. Phys. Lett. 80, 3286 (2002)CrossRefADSGoogle Scholar
  16. 16.
    G. Gomez-Santos, Phys. Rev. Lett. 90, 077401 (2003)CrossRefADSGoogle Scholar
  17. 17.
    D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry, Appl. Phys. Lett. 82, 1506 (2003)CrossRefADSGoogle Scholar
  18. 18.
    I.A. Larkin, M.I. Stockman, Nano Lett. 5, 339 (2005)CrossRefADSGoogle Scholar
  19. 19.
    A. Grbic, G.V. Elefheriades, Phys. Rev. Lett. 92, 117403 (2003)CrossRefADSGoogle Scholar
  20. 20.
    B.I. Popa, S.A. Cummer, Phys. Rev. E 73, 016617 (2006)CrossRefADSGoogle Scholar
  21. 21.
    N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)CrossRefADSGoogle Scholar
  22. 22.
    D.O.S. Melville, R.J. Blaikie, Opt. Express 13, 2127 (2005)CrossRefADSGoogle Scholar
  23. 23.
    R.J. Blaikie, D.O.S. Melville, M.M. Alkalsi, Microelectron. Eng. 83, 723 (2006)CrossRefGoogle Scholar
  24. 24.
    D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000)CrossRefADSGoogle Scholar
  25. 25.
    J.B. Pendry, S.A. Ramakrishna, J. Phys. 15, 6345 (2003)Google Scholar
  26. 26.
    A. Lakhtakia, Int. J. Infrared Milli. 23, 339 (2002)CrossRefGoogle Scholar
  27. 27.
    D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003)CrossRefADSGoogle Scholar
  28. 28.
    D. Schurig, D.R. Smith, New J. Phys. 7, 162 (2005)CrossRefADSGoogle Scholar
  29. 29.
    P. Kolinko, D.R. Smith, Opt. Express 11, 640 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997), p. 521Google Scholar
  31. 31.
    W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, Phys. Rev. Lett. 96, 107401 (2006)CrossRefADSGoogle Scholar
  32. 32.
    D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)CrossRefADSGoogle Scholar
  33. 33.
    S. Zhang, W.J. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)CrossRefADSGoogle Scholar
  34. 34.
    V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)CrossRefADSGoogle Scholar
  35. 35.
    J. Zhou, T. Koschny, M. Kafesaki, E.N. Economou, J.B. Pendry, C.M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005)CrossRefADSGoogle Scholar
  36. 36.
    G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 31, 1800 (2006)CrossRefADSGoogle Scholar
  37. 37.
    D.R. Smith, D. Schurig, J.J. Mock, P. Kolinko, P. Rye, Appl. Phys. Lett. 84, 2244 (2004)CrossRefADSGoogle Scholar
  38. 38.
    T. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis, Phys. Rev. E 68, 065602 (2003)CrossRefADSGoogle Scholar
  39. 39.
    B.J. Justice, J.J. Mock, L. Guo, A. Degiron, D. Schurig, D.R. Smith, Opt. Express 14, 8694 (2006)CrossRefADSGoogle Scholar
  40. 40.
    D. Schurig, Int. J. Numer. Model. 19, 215 (2006)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Degiron
    • 1
  • D.R. Smith
    • 1
  • J.J. Mock
    • 1
  • B.J. Justice
    • 1
  • J. Gollub
    • 1
  1. 1.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA

Personalised recommendations